|学案下载
搜索
    上传资料 赚现金
    新教材高中数学第4章概率与统计4.1条件概率与事件的独立性4.1.2乘法公式与全概率公式导学案新人教B版选择性必修第二册
    立即下载
    加入资料篮
    新教材高中数学第4章概率与统计4.1条件概率与事件的独立性4.1.2乘法公式与全概率公式导学案新人教B版选择性必修第二册01
    新教材高中数学第4章概率与统计4.1条件概率与事件的独立性4.1.2乘法公式与全概率公式导学案新人教B版选择性必修第二册02
    新教材高中数学第4章概率与统计4.1条件概率与事件的独立性4.1.2乘法公式与全概率公式导学案新人教B版选择性必修第二册03
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学4.1.2 乘法公式与全概率公式学案及答案

    展开
    这是一份数学4.1.2 乘法公式与全概率公式学案及答案,共10页。

    4.1.2 乘法公式与全概率公式

     

    (教师独具内容)

    课程标准:1.结合古典概型会用乘法公式计算概率.2.会利用全概率公式计算概率.3.了解贝叶斯公式.

    教学重点:理解并掌握乘法公式全概率公式.

    教学难点:应用乘法公式全概率公式解题.

     

     

    知识点一   乘法公式

    根据事件A发生的概率以及事件A发生的条件下事件B发生的概率可以求出AB同时发生的概率.一般地这个结论称为乘法公式P(BA)=P(A)P(B|A).推广到三个事件:P(ABC)=P(A)P(B|A)P(C|AB)一般地P(A1A2An)=P(A1)P(A2|A1)…P(An|A1A2An-1)与次序无关.乘法公式的应用:主要应用于求几个事件同时发生的概率.

    知识点二   全概率公式

    一般地如果样本空间为ΩAB为事件BAB是互斥的P(A)0且P()0时P(B)=P(A)P(B|A)+P()P(B|).这称为全概率公式.

    定理1 若样本空间Ω中的事件A1A2An满足:

    (1)任意两个事件均互斥AiAj ij=1,2nij

    (2)A1A2+…+AnΩ

    (3)P(Ai)>0i=1,2n.

    则对Ω中的任意事件B都有BBA1BA2+…+BAnP(B)=(BAi)=(Ai)P(B|Ai).上述公式也称为全概率公式.

    知识点三   贝叶斯公式

    一般地当1>P(A)>0且P(B)>0时P(A|B)=.这称为贝叶斯公式.同全概率公式一样贝叶斯公式也可以进行推广.

    定理2 若样本空间Ω中的事件A1A2An满足:(1)任意两个事件均互斥AiAjij=1,2nij

    (2)A1A2+…+AnΩ

    (3)1>P(Ai)>0i=1,2n.

    则对Ω中的任意概率非零的事件B

    P(Aj|B)=.

    上述公式也称为贝叶斯公式.

     

    1.乘法公式的理解:两个事件同时发生的概率等于第一个事件发生的概率乘以第一个事件发生的条件下第二个事件发生的条件概率.

    2全概率公式的理解:“全”部概率被分解成了许多部分之和.某事件B的发生有各种可能的原因(i=1,2n).如果B发生是由原因Ai所引起的B发生的概率是P(B)=P(BAi)=P(Ai)P(B|Ai).每一原因都可能导致B发生B发生的概率是各原因引起B发生的概率的总和即全概率公式.

    1判一判(正确的打“√”错误的打“×”)

    (1)若P(A)>0P(AB)=P(A)P(B|A).(  )

    (2)P(B|A)=P(AB).(  )

    (3)P((AB)|A)=P(B).(  )

    答案 (1)√ (2)× (3)×

    2做一做(请把正确的答案写在横线上)

    (1)已知P(B|A)=P(A)=P(AB)等于________.

    (2)已知P(A)=P(B|A)=P(B|)=P(B)=________P(A|B)=________.

    (3)已知P(BA)=0.35P(B)=0.72P(B)=________.

    答案 (1) (2)  (3)0.37

     

      

    题型一  乘法公式的应用

    例1 10个考签中有4个难签3人参加抽签(不放回)甲先乙次丙最后.求:

    (1)甲抽到难签的概率;

    (2)甲乙都抽到难签的概率;

    (3)甲没有抽到难签而乙抽到难签的概率;

    (4)甲丙都抽到难签的概率.

    [] 记事件ABC分别表示甲丙抽到难签

    (1)P(A)=.

    (2)P(AB)=P(A)P(B|A)=×.

    (3)P(B)=P()P(B|)=×.

    (4)P(ABC)=P(A)P(B|A)P(C|AB)=××.

     

    点睛

    由条件概率公式P(B|A)=可推导得出乘法公式:P(AB)=P(B|A)P(A)(P(A)>0).即要求AB事件同时发生的概率需建立缩小的事件空间再由概率相乘可得.

     

     在标有1,2,3,4,5这5个数字的卡片里无放回地抽取两次一次一张求:

    (1)第一次取到奇数卡片的概率;

    (2)已知第一次取到偶数卡片求第二次取到奇数卡片的概率;

    (3)第二次才取到奇数卡片的概率.

    解 设AB分别表示第一次和第二次取到奇数卡片这两个事件

    (1)P(A)=.

    (2)第一次取出一张偶数卡片还剩4张卡片而其中有3张奇数卡片故此时取一张奇数卡片的概率为P(B|)=.

    (3)第二次才取到奇数卡片第一次应取偶数卡片即第一次发生故{第二次才取到奇数卡片}应是B同时发生P(B)=P()P(B|)=×.

     

    题型二  全概率公式的应用

    例2 已知某工厂有两个车间生产同型号家用电器第一车间的次品率为0.15第二车间的次品率为0.12两个车间的成品都混合堆放在一个仓库假设第1,2车间生产的产品比例为23今有一客户从成品仓库中随机提一台产品求该产品合格的概率.

    [] 设B={从仓库中随机提出的一台是合格品}

    Ai={提出的一台是第i车间生产的}i=1,2

    则有BA1BA2B.

    由题意知P(A1)=P(A2)=P(B|A1)=0.85P(B|A2)=0.88.

    由全概率公式有P(B)=P(A1)P(B|A1)+P(A2P(B|A2)=×0.85+×0.88=0.868.

     

    点睛

    全概率公式的实际意义

    在较复杂情况下直接计算P(B)不易B总是伴随着某个Ai出现适当地去构造一组互斥的AiP(BAi)之和计算P(B)即可.

     

     市场上有甲丙三家工厂生产的同一品牌产品已知三家工厂的市场占有率分别为30%,20%,50%且三家工厂的次品率分别为3%,3%,1%试求市场上该品牌产品的次品率.

    解 设A表示买到一件次品;B1B2B3分别表示买到一件甲厂乙厂丙厂的产品.则

    P(A)=P(AB1)+P(AB2)+P(AB3)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)=30%×3%+20%×3%+50%×1%=2%.

      

    题型三  贝叶斯公式的应用

    例3 设某公路上经过的货车与客车数量之比为21货车中途停车修理的概率为0.02客车为0.01今有一辆汽车中途停车修理求该汽车是货车的概率.

    [] 设B={中途停车修理}A1={经过的是货车}A2={经过的是客车}BA1BA2B由贝叶斯公式有

    P(A1|B)=

    =0.80.

     

    点睛

    利用贝叶斯公式解题即在观察到事件B已发生的条件下寻找导致事件A发生的每个原因Ai的概率.

     

     对以往的数据分析结果表明当机器调整得良好时产品的合格率为90%,而当机器发生某一故障时,其合格率为30%.每天早上机器开动时,机器调整良好的概率为75%.已知某天早上第一件产品是合格品,机器调整得良好的概率是多少?

    解 设A表示产品合格B表示机器调整良好.则

    P(B|A)=

    =90%.

     

     

    1AB是任意两个随机事件ABP(B)>0则下列各式中正确的是(  )

    AP(A)<P(A|B)  B.P(A)≤P(A|B)

    CP(A)>P(A|B)  D.P(A)≥P(A|B)

    答案 B

    解析 因为AB所以ABA所以P(A|B)=所以P(A)=P(B)P(A|B).又0P(B)≤1所以P(A)≤P(A|B)故选B.

    2有朋自远方来他乘火车轮船汽车飞机来的概率分别是0.3,0.2,0.1,0.4.如果他乘火车轮船汽车来的话迟到的概率分别是而乘飞机则不会迟到.则他迟到的概率为(  )

    A0.09  B.0.10  C.0.15  D.0.20

    答案 C

    解析 P=0.3×+0.2×+0.1×=0.15故选C.

    3公司销售10台洗衣机其中有3台次品.现已售出1台洗衣机在余下的洗衣机中任取两台发现均为正品则原先售出的一台为次品的概率为(  )

    A.  B.  C.  D.

    答案 D

    解析 设事件A为“售出的1台洗衣机为次品”B为“余下的9台洗衣机中取出2台均为正品”.显然P(A)=P()=P(B|A)=P(B|)=由贝叶斯公式有P(A|B)=.故选D.

    4一批产品中有4%的次品而合格品中一等品占45%从这批产品中任取一件则该产品是一等品的概率为________.

    答案 43.2%

    解析 设A表示取到的产品是一等品B表示取到的产品是合格品P(A|B)=45%P()=4%P(B)=1-P()=96%P(A)=P(AB)=P(B)P(A|B)=96%×45%=43.2%.

    51号箱中有2个白球和4个红球2号箱中有5个白球和3个红球现随机地从1号箱中取出一球放入2号箱然后从2号箱中随机取出一球则从2号箱中取出红球的概率是多少?

    解 记事件A为“最后从2号箱中取出的是红球”事件B为“从1号箱中取出的是红球”

    P(B)=P()=1-P(B)=P(A|B)=P(A|)=

    从而P(A)=P(AB)+P(A)=P(A|B)P(B)+P(A|)P()=××.

     

     

    A级:“四基”巩固训练

    选择题

    1已知P(B|A)=0.3P(A)=0.4P(B|)=0.2P(B)=(  )

    A0.28  B.0.12  C.0.24  D.0.36

    答案 C

    解析 由P(A)=0.4P()=0.6P(B)=P(AP(B|A)+P()P(B|)=0.4×0.3+0.6×0.2=0.24故选C.

    2下列式子成立的是(  )

    AP(A|B)=P(B|A)

    B0<P(B|A)<1

    CP(AB)=P(A)P(B|A)

    DP((AB)|B)=P(B|A)

    答案 C

    解析 显然A错误;0≤P(B|A)≤1B错误;由P(B|A)=P(AB)=P(B|A)P(A)C正确;

    P((AB)|B)=P(A|B)D错误.故选C.

    3一个盒子有6只白球4只黑球从中不放回地每次任取1只连取2次则第二次取到白球的概率为(  )

    A0.6  B.0.4  C.0.2  D.0.1

    答案 A

    解析 设A={第一次取到白球}B={第二次取到白球}因为BABBABB互斥所以P(B)=P(AB)+P(B)=P(A)P(B|A)+P()P(B|)=××=0.6.

    4设某光学仪器厂制造的透镜第一次落下时打破的概率为.若第一次落下未打破第二次落下打破的概率是.则透镜落下两次未打破的概率为(  )

    A.  B.  C.  D.

    答案 B

    解析 设A1={透镜第一次落下打破}A2={透镜第二次落下打破}B={透镜落下两次未打破}B12P(B)=P(12)=P(1)P(2|1)=1-×1-.

    5袋中有a个白球和b个黑球不放回摸球两次则第二次摸出白球的概率为(  )

    A.  B.  C.  D.

    答案 D

    解析 分别记AB为第一次第二次摸到白球由全概率公式P(B)=P(A)P(B|A)+P()P(B|)=··.

    填空题

    6已知甲袋中有6只红球4只白球;乙袋中有8只红球6只白球.若随机取一只袋再从该袋中随机取一球该球是红球的概率为________.

    答案 

    解析 记B={该球是红球}A1={取自甲袋}A2={取自乙袋}.已知P(B|A1)=P(B|A2)=所以P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)=××.

    7乙两人比赛乒乓球甲发球.已知甲发球不会失误乙接发球失误率为0.3接甲回球的成功率为0.5甲接乙回球的失误率为0.4.则乙在两个回合中失分的概率为________.

    答案 0.51

    解析 失误有两种情况:第一次回球乙失分概率为0.3;第二次回球乙失分概率为0.7×0.6×0.5即甲发球成功后乙第一次回球成功然后甲回球成功最后乙回球失误.故乙在两个回合中失分的概率为0.3+0.7×0.6×0.5=0.51.

    8袋中装有m枚正品硬币n枚次品硬币(次品硬币的两面均为数字)在袋中任取一枚将它投掷r已知每次都得到数字则这枚硬币是正品的概率为________.

    答案 

    解析 记T为“将硬币投掷r次每次都出现数字”A为“所取到的是正品”由题设得P(A)=P()=P(T|A)=P(T|)=1.需求P(A|T)由贝叶斯公式可得P(A|T)=.

    解答题

    9100件产品中有5件是次品从中连续无放回地抽取3次求第三次才取得次品的概率(精确到0.001).

    解 设Ai表示“第i次取得次品(i=1,2,3)”

    B表示“第三次才取得次品”B12A3P(B)=P(12A3)=P(1)P(2|1)P(A3|12)=××≈0.046.

    所以第三次才取得次品的概率约为0.046.

    10轰炸机轰炸某目标它能飞到距目标400,200100(米)的概率分别是0.5,0.3,0.2又设它在距目标400,200,100(米)时的命中率分别是0.01,0.02,0.1求目标被命中的概率为多少?

    解 设事件A1表示“飞机能飞到距目标400米处”事件A2表示“飞机能飞到距目标200米处”事件A3表示“飞机能飞到距目标100米处”用事件B表示“目标被击中”.由题意得P(A1)=0.5P(A2)=0.3P(A3)=0.2P(B|A1)=0.01P(B|A2)=0.02P(B|A3)=0.1.

    由全概率公式得P(B)=P(B|A1)P(A1)+P(B|A2P(A2)+P(B|A3)P(A3)=0.01×0.5+0.02×0.3+0.1×0.2=0.031.

    所以目标被命中的概率为0.031.

     

    B级:“四能”提升训练

    1.某家公司有三台机器A1A2A3生产同一种产品生产量分别占总产量的且其产品的不良率分别各占其产品量的2%,1.2%,1%任取公司的一件产品则其为不良品的概率为________若已知此产品为不良品则此产品由A1所生产出的概率为________.

    答案  

    解析 记事件A1为“该产品是A1生产的”事件A2为“该产品是A2生产的”事件A3为“该产品是A3生产的”事件B为“该产品为不良品”P(B)=P(B|A1P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)=2%×+1.2%×+1%×.若此产品为不良品则此产品由A1所生产的概率为P(A1|B)=.

    2同一种产品由甲丙三个工厂供应.由长期的经验知三家的正品率分别为0.95,0.90,0.80三家产品数所占比例为235混合在一起.

    (1)从中任取一件求此产品为正品的概率;

    (2)现取到一件产品为正品问它是由甲丙三个工厂中哪个厂生产的可能性最大?

    解 设事件A表示“取到的产品为正品”B1B2B3分别表示“产品由甲丙厂生产”.由已知得

    P(B1)=0.2P(B2)=0.3P(B3)=0.5

    P(A|B1)=0.95P(A|B2)=0.9P(A|B3)=0.8.

    (1)由全概率公式得P(A)=(Bi)P(A|Bi)=0.2×0.95+0.3×0.9+0.5×0.8=0.86.

    (2)由贝叶斯公式得

    P(B1|A)=≈0.2209

    P(B2|A)=≈0.3140

    P(B3|A)=≈0.4651

    由以上3个数作比较可知这件产品由丙厂生产的可能性最大.

     

    相关学案

    湘教版(2019)选择性必修 第二册3.1 条件概率与事件的独立性学案: 这是一份湘教版(2019)选择性必修 第二册3.1 条件概率与事件的独立性学案,共4页。

    高中数学湘教版(2019)选择性必修 第二册3.1 条件概率与事件的独立性学案设计: 这是一份高中数学湘教版(2019)选择性必修 第二册3.1 条件概率与事件的独立性学案设计,共4页。

    高中人教B版 (2019)4.1.1 条件概率学案设计: 这是一份高中人教B版 (2019)4.1.1 条件概率学案设计,共14页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新教材高中数学第4章概率与统计4.1条件概率与事件的独立性4.1.2乘法公式与全概率公式导学案新人教B版选择性必修第二册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map