初中数学3.3 一元一次不等式精品ppt课件
展开熟练掌握一元一次不等式解实际问题的一般步骤?
学会灵活利用一元一次不等式解决实际问题?
甲、乙两商场购物以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购买100元商品后,超过100元的部分按原价的90%收费;在乙商场累计购买50元商品后,超过50元的部分按原价的95%收费。顾客到哪家商场购物花费少?
1.甲商场优惠方案的起点为购物款达到 元后;2. 乙商场优惠方案的起点为购物款达到 元后;3.购物的要求是 ;4.选择的地方有 ;5.要获得更大优惠主要取决于 .
甲、乙两商场购物以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购买100元商品后,超过100元的部分按原价的90%收费;在乙商场累计购买50元商品后,超过50元的部分按原价的95%收费.顾客到哪家商场购物花费少?
我们可以把购物款划分为三个范围:
(1)当累计购物款不超过50元;
(2)当累计购物款超过50元而不超过100元时;
(3)当累计购物款超过100元时.
在甲、乙两商场购物都不享受优惠,且两商场以同样价格出售同样的商品,因此甲、乙两家商场消费一样.
享受乙商场的购物优惠,不享受甲商场的购物优惠,因此去乙商场购物省钱.
在甲商场付款可表示为___________________元;在乙商场付款可表示为___________________元.
100+0.9(x-100)
50+0.95(x-50)
①如果在甲商场购物花费少,则
50+0.95(x-50) >100+0.9(x-100)
解得 x > 150
设购物x元,则在甲商场付款100+0.9(x-100)元,在乙商场付款50+0.95(x-50)元。
这就是说,累计购物超过150元时,到甲商场购物花费少.
②如果在乙商场购物花费少,则
50+0.95(x-50) <100+0.9(x-100)
解得 x <150
设购物x元,则在甲商场付款100+0.9(x-100)元,在乙商场付款50+0.95(x-50)元.
这就是说,累计购物超过100元而不超过150元时,到乙商场购物花费少.
③如果甲、乙商场购物花费一样多时
50+0.95(x-50) =100+0.9(x-100)
解得 x =150
这就是说,累计购物150元时,到甲、乙商场购物花费一样多.
(1)当累计购物不超过50元时,则甲、乙两家商场消费一样;
(2)当累计购物超过50元而不超过100元时,则去乙商场购物花费少;
(3)当累计购物超过100元时:
这就是说,累计购物超过100元而不超过150元时,到乙商场购物花费少。
某单位计划10月份组织员工到杭州旅游,人数估计在10到25人之间,甲、乙两旅行社的服务质量相同且组织到杭州旅游的价格都是每人200元,该单位联系时,甲旅行社表示可以给予每位游客七五折优惠,乙旅行社表示可以免去一带队领导的旅游费用,其余游客八折优惠。问该单位怎样选择,可使支付的旅游总费用较少?
支付甲旅行社费用表示为____________元;支付乙旅行社费用表示为____________元.
我们可以分为三种情况研究:
(1)甲旅行社和乙旅行社费用相同时;
(2)甲旅行社大于乙旅行社费用时;
(3)甲旅行社小于乙旅行社费用时.
解:设该单位去x人,则:支付甲旅行社150x元,支付乙旅行社(160x-160)元。 (1)当支付甲旅行社和乙旅行社费用相同时: 150x=160x-160 解得:x =16 (2)当支付甲旅行社大于乙旅行社费用时: 150x>160x-160 解得:x<16 (3)当支付甲旅行社小于乙旅行社费用时: 150x < 160x-160 解得:x>16
答:当去的人数小于16人时,选乙旅行社;当去的人数等于16人时,甲、乙旅行社一样;当去的人数大于16人时,选甲旅行社。
设需要购买x块地板砖,则有 5×4≤0.6×0.6x 解得 x ≥ 55.6 由于地板砖的数目必须是整数,所以x的最小值为56. 答:小明至少要购买56块地板砖.
1.小明家的客厅长5 m,宽4 m.现在想购买边长为60 cm的正方形地板砖把地面铺满,至少需要购买多少块这样的地板砖?
2. 一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?
解: 设小明答对了 x 道题,则他答错和不答 的共有 (25-x)道题.根据题意,得
4x-1×(25-x)≥85.
解这个不等式,得 x ≥ 22.
所以,小明至少答对了22道题.
分析: 本题涉及的数量关系是:总得分≥85.
解:设小明家每月用水x立方米.∵5×1.8=9<15,∴小明家每月用水超过5立方米,则超出(x-5)立方米,按每立方米2元收费,列出不等式为:5×1.8+(x-5)×2≥15,解不等式得:x≥8.答:小明家每月用水量至少是8立方米.
3.小明家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小明家每月用水量至少是多少?
应用一元一次不等式解实际问题的一般步骤:
实际问题(包含不等关系)
数学问题(一元一次不等式)
数学问题的解(不等式的解集)
初中数学浙教版八年级上册第3章 一元一次不等式3.3 一元一次不等式多媒体教学课件ppt: 这是一份初中数学浙教版八年级上册第3章 一元一次不等式3.3 一元一次不等式多媒体教学课件ppt,共14页。PPT课件主要包含了一类比导入,变形转化,系数化“1”,不等式的基本性质2,合并同类项法则,不等式的基本性质3,类比导入,二例题讲解,例题讲解,解一元一次方程等内容,欢迎下载使用。
初中数学3.3 一元一次不等式完美版课件ppt: 这是一份初中数学3.3 一元一次不等式完美版课件ppt,文件包含浙教版数学八上332解一元一次不等式课件pptx、浙教版数学八上33一元一次不等式练习docx、浙教版数学八上332解一元一次不等式教案doc等3份课件配套教学资源,其中PPT共16页, 欢迎下载使用。
初中数学浙教版八年级上册3.3 一元一次不等式精品课件ppt: 这是一份初中数学浙教版八年级上册3.3 一元一次不等式精品课件ppt,文件包含浙教版数学八上331认识一元一次不等式课件pptx、浙教版数学八上33一元一次不等式练习docx、浙教版数学八上331认识一元一次不等式教案doc等3份课件配套教学资源,其中PPT共14页, 欢迎下载使用。