初中数学北师大版八年级下册4 分式方程第2课时教案
展开4 分式方程
第2课时 分式方程的解法
【教学目标】
【知识与技能】
1.理解分式方程的概念;
2.会通过设适当的未知数并根据等量关系列出分式方程;
3.学生掌握解分式方程的基本方法和步骤.
【过程与方法】
通过列出的方程归纳出它们的共同特点,得出分式方程的概念.了解分式的概念,明确分式和整式的区别;经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.
【情感态度】
在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.
【教学重点】
1、掌握分式方程的解法、解,分式方程要验根.
2、在进一步理解分式方程意义的基础上,掌握分式方程的一般解法;
【教学难点】
1、掌握分式方程的解法、解,分式方程要验根.
2、了解解分式方程可能会产生增根,掌握解分式方程一定要验根及验根方法.
【教学过程】
一、情境导入
问题1:填空:
(1)分母中不含未知数的方程叫做整式方程;
(2)分母中含有未知数的方程叫做分式方程.
问题2:判断下列说法是否正确:
①=5是分式方程;
②=是分式方程;
③=1是分式方程;
④=是分式方程.
解:①不是分式方程,因为分母中不含有未知数.②是分式方程.因为分母中含有未知数.③是分式方程.因为分母中含有未知数.④是分式方程.因为分母中含有未知数.
问题3:方程=与以前学习的方程有什么不同?怎样解这样的方程?
二、合作探究
探究点一:分式方程的解法
【类型一】 解分式方程
解方程:
(1)=;(2)=-3.
解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根.
解:(1)方程两边同乘x(x-2),得5(x-2)=7x,5x-10=7x,2x=-10,解得x=-5,检验:把x=-5代入最简公分母,得x(x-2)≠0,∴x=-5是原方程的解;
(2)方程两边同乘最简公分母(x-2),得1=x-1-3(x-2),解得x=2,检验:把x=2代入最简公分母,得x-2=0,∴原方程无解.
方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.
【类型二】 由分式方程的解确定字母的取值范围
关于x的方程=1的解是正数,则a的取值范围是____________.
解析:去分母得2x+a=x-1,解得x=-a-1,∵关于x的方程=1的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2.
方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.
探究点二:分式方程的增根
【类型一】 求分式方程的增根
若方程=+有增根,则增根为( )
A.0 B.2 C.0或2 D.1
解析:∵最简公分母是x(x-2),方程有增根,则x(x-2)=0,∴x=0或x=2.去分母得3x=a(x-2)+4,当x=0时,2a=4,a=2;当x=2时,6=4不成立,∴增根只能为x=0,故选A.
方法总结:增根是使分式方程的分母为0的根,所以判断增根只需让分式方程的最简公分母为0,注意应舍去不合题意的解.
【类型二】 分式方程有增根,求字母的值
如果关于x的分式方程=1-有增根,则m的值为( )
A.-3 B.-2
C.-1 D.3
解析:方程两边同乘以x-3,得2=x-3-m①.∵原方程有增根,∴x-3=0,即x=3.把x=3代入①,得m=-2.故选B.
方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
【类型三】 分式方程无解,求字母的值
若关于x的分式方程+=无解,求m的值.
解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.
解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.
方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.
三、板书设计
1.分式方程的解法
方程两边同乘以最简公分母,化为整式方程求解,再检验.
2.分式方程的增根
(1)解分式方程为什么会产生增根;
(2)分式方程检验的方法.
四、教学反思
这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错.
初中数学北师大版八年级下册第五章 分式与分式方程4 分式方程第2课时教案: 这是一份初中数学北师大版八年级下册第五章 分式与分式方程4 分式方程第2课时教案,共4页。教案主要包含了创设情境,课堂引入,实践探究,交流新知,教师提问,学生活动,示例展示,师生总结,巩固练习,合作探究,解决问题等内容,欢迎下载使用。
初中数学北师大版八年级下册4 分式方程第1课时教学设计及反思: 这是一份初中数学北师大版八年级下册4 分式方程第1课时教学设计及反思,共4页。教案主要包含了教学目标,知识与技能,过程与方法,情感态度,教学重点,教学难点,教学过程,教学说明等内容,欢迎下载使用。
北师大版八年级下册4 分式方程第1课时教案设计: 这是一份北师大版八年级下册4 分式方程第1课时教案设计,共3页。教案主要包含了知识与技能,过程与方法,情感、态度与价值观,教学重点,教学难点,技巧点拨等内容,欢迎下载使用。