初中数学人教版八年级上册14.3.2 公式法测试题
展开14.3.2 公式法
知能演练提升
一、能力提升
1.下列因式分解正确的是( )
A.a2-b2=(a-b)2
B.x2+4y2=(x+2y)2
C.2-8a2=2(1+2a)(1-2a)
D.x2-4y2=(x+4y)(x-4y)
2.若x2+2(m-3)x+16是完全平方式,则m的值为 ( )
A.-5 B.3 C.7 D.7或-1
3.已知多项式x+81b4可以分解为(4a2+9b2)(2a+3b)(3b-2a),则x为( )
A.16a4 B.-16a4 C.4a2 D.-4a2
4.将下列多项式分解因式,结果中不含因式x-1的是( )
A.x2-1 B.x(x-2)+(2-x)
C.x2-2x+1 D.x2+2x+1
5.已知x为任意实数,则多项式x-1-x2的值( )
A.一定为负数
B.不可能为正数
C.一定为正数
D.可能为正数或负数或零
6.如果x+y=1,那么x2+xy+y2的值是 .
7.分解因式:9x2-y2-4y-4= .
8.分解因式:x(x-1)-3x+4= .
9.如图,利用1个a×a的正方形,1个b×b的正方形和2个a×b的长方形可拼成一个正方形,从而可得到因式分解的公式 .
10.把下列各式分解因式:
(1)a3b-ab;
(2)x2-2xy+y2-9;
(3)5mx2-10mxy+5my2;
(4)(x2+y2)2-4x2y2.
11.利用因式分解计算下列各题:
(1)5352×4-4652×4;
(2)1022+102×196+982;
(3)17.82-2×17.8×7.8+7.82;
(4)982+4×98+4.
12.现有一种根据自己生日用“因式分解”法产生的密码,既简单又方便记忆.原理是:若某人的生日是8月5日,他选择了多项式x3+x2y,其分解因式的结果是x·x·(x+y),然后将x=8,y=5代入,此时各个因式的值分别是:x=8,x=8,x+y=13,于是就可以把“8813”作为密码.小明选择了多项式x3+2x2y+xy2,他的生日是10月22日,请你写出用上述方法产生的密码.(写出一个即可)
二、创新应用
★13.阅读下面的解题过程:
分解因式:x2-4x-12.
解:x2-4x-12
=x2-4x+-12
=x2-4x+4-4-12
=(x-2)2-42
=(x-2-4)(x-2+4)
=(x-6)(x+2).
请仿照上面的解法把下列各式分解因式:
(1)a2+2a-8;
(2)y2-y-6.
知能演练·提升
一、能力提升
1.C 2.D 3.B
4.D 因为x2-1=(x+1)·(x-1),x(x-2)+(2-x)=(x-2)(x-1),x2-2x+1=(x-1)2, x2+2x+1=(x+1)2.
5.B 因为x-1-x2=-=-≤0,
所以x-1-x2的值不可能为正数.
6.
7.(3x+y+2)(3x-y-2) 原式=9x2-(y2+4y+4)=9x2-(y+2)2=(3x+y+2)(3x-y-2).
8.(x-2)2 原式=x2-x-3x+4=x2-4x+4=(x-2)2.
9.a2+2ab+b2=(a+b)2
10.解 (1)a3b-ab=ab(a2-1)=ab(a+1)(a-1).
(2)x2-2xy+y2-9=(x2-2xy+y2)-9=(x-y)2-32=(x-y+3)(x-y-3).
(3)5mx2-10mxy+5my2
=5m(x2-2xy+y2)
=5m(x-y)2.
(4)(x2+y2)2-4x2y2=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.
11.解 (1)5352×4-4652×4
=4×(5352-4652)
=4×(535+465)×(535-465)
=4×1 000×70=280 000.
(2)1022+102×196+982=(102+98)2=2002=40 000.
(3)原式=(17.8-7.8)2=102=100.
(4)原式=982+2×98×2+22=(98+2)2=1002=10 000.
12.解 x3+2x2y+xy2=x(x2+2xy+y2)=x(x+y)2=x(x+y)(x+y).当x=10,y=22时,密码为103232或323210或321032.选其一个作答即可.
二、创新应用
13.解 (1)a2+2a-8=a2+2a+-8
=a2+2a+1-9
=(a+1)2-32
=(a+1+3)(a+1-3)
=(a+4)(a-2).
(2)y2-y-6=y2-y+-6
=
=
=
=(y+2)(y-3).
人教版八年级上册14.3.2 公式法习题: 这是一份人教版八年级上册14.3.2 公式法习题,共3页。
人教版八年级上册第十四章 整式的乘法与因式分解14.3 因式分解14.3.2 公式法随堂练习题: 这是一份人教版八年级上册第十四章 整式的乘法与因式分解14.3 因式分解14.3.2 公式法随堂练习题,共3页。
数学八年级上册14.3.1 提公因式法课后练习题: 这是一份数学八年级上册14.3.1 提公因式法课后练习题,共5页。试卷主要包含了能力提升,创新应用等内容,欢迎下载使用。