中考数学一轮复习《与圆有关的计算》课时跟踪练习(含答案)
展开中考数学一轮复习
《与圆有关的计算》课时跟踪练习
一 、选择题
1.若正六边形的半径为4,则它的边长等于( )
A.4 B.2 C.2 D.4
2.如图,PA、PB是⊙O切线,切点分别为A、B,若OA=2,∠P=60°,则长为( )
A.π B.π C. D.
3.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则R与r之间的关系是( ).
A.R=2r B. C.R=3r D.R=4r
4.如图,将△ABC绕点C按顺时针旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过图形面积为( )
A.π B.π C.6π D.π
5.如图,要拧开一个边长为a=6 mm的正六边形螺帽,扳手张开的开口b至少为( )
A.6 mm B.12 mm C.6 mm D.4 mm
6.如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=6,则S阴影等于( )
A. B.π C.π D.2π
7.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之和为S2,则=( )
A. B. C. D.1
8.如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A处,若AO=OB=2,则阴影部分面积为( )
A. B. -1 C.π-1 D.π
二 、填空题
9.边长相等的正五边形和正六边形如图所示拼接在一起,则∠ABC=______°.
10.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为 cm.
11.如图,正方形ABCD的边长为1cm,以CD为直径在正方形内画半圆,再以C为圆心,1cm长为半径画弧BD,则图中阴影部分的面积为 .
12.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为 .
13.如图,在菱形ABCD中,AB=2,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动的路径为弧CC′,则图中阴影部分的面积为 .
14.如图,ABCD是围墙,AB∥CD,∠ABC=120°,一根6m长的绳子,一端拴在围墙一角的柱子B处,另一端E处拴着一只羊,这只羊活动区域的最大面积为 .
三 、解答题
15.如图所示,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,连接EF交AC于点G.
(1)若BF=EF,试判断直线EF与⊙O的位置关系,并说明理由;
(2)若OA=2,∠A=30°,求弧DE的长.
16.如图,在Rt△ABC中,∠C=90°,AC=5 cm,BC=12 cm,以BC边所在的直线为轴,将△ABC旋转一周得到一个圆锥,求这个圆锥的侧面积.
17.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.
(1)求证:CF是⊙O的切线;
(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)
18.如图,菱形OABC的顶点A的坐标为(2,0),∠COA=60°.将菱形OABC绕坐标原点O逆时针旋转120°得到菱形ODEF.
(1)直接写出点F的坐标;
(2)求线段OB的长及图中阴影部分的面积.
参考答案
1.A
2.C
3.D
4.D
5.C
6.D
7.B
8.D
9.答案为:24.
10.答案为:4π.
11.答案为:cm2
12.答案为:10πcm2.
13.答案为:π+6﹣4.
14.答案是:12π+m2.
15.解:(1)连接OE,
∵OA=OE,
∴∠A=∠AEO,
∵BF=EF,
∴∠B=∠BEF,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠AEO+∠BEF=90°,
∴∠OEG=90°,
∴EF是⊙O的切线;
(2)∵AD是⊙O的直径,
∴∠AED=90°,
∵∠A=30°,
∴∠EOD=60°,
∵AO=2,
∴OE=2,
∴弧DE的长=.
16.解:∠C=90°,AC=5 cm,BC=12 cm,
由勾股定理,得AB=13 cm.
以BC边所在的直线为轴,将△ABC旋转一周,
则所得到的几何体的底面圆周长为2π×5=10π(cm),
侧面积为×10π×13=65π(cm2).
17.(1)证明:如图连接OD.
∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,
∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,
在△COD和△COA中,,∴△COD≌△COA,
∴∠CAO=∠CDO=90°,∴CF⊥OD,∴CF是⊙O的切线.
(2)解:∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,
∵OD=OB,∴△OBD是等边三角形,∴∠DBO=60°,
∵∠DBO=∠F+∠FDB,∴∠FDB=∠EDC=30°,
∵EC∥OB,∴∠E=180°﹣∠OBD=120°,
∴∠ECD=180°﹣∠E﹣∠EDC=30°,∴EC=ED=BO=DB,∵EB=4,∴OB=OD═OA=2,
在RT△AOC中,∵∠OAC=90°,OA=2,∠AOC=60°,∴AC=OA•tan60°=2,
∴S阴=2•S△AOC﹣S扇形OAD=2××2×2﹣=2﹣.
18.解:(1)因为点A的坐标为(2,0),
所以OA=2.
因为四边形OABC是菱形,
所以OC=OA=2,
所以OF=2,
所以点F的坐标为(-2,0).
(2)过点B作BG⊥x轴,垂足为G,
在Rt△BAG中,∠BAG=∠COA=60°,
所以∠ABG=30°,
所以AG=AB=OA=1,
所以BG=.
在Rt△OBG中,OG=3,BG=,
所以OB==2 ,
S阴影=S扇形OBE-2S△OBC=S扇形OBE-2S△OBA=×π×(2 )2-2××2×=4π-2 .
中考数学一轮复习课时练习第26课时 与圆有关的计算 (含答案): 这是一份中考数学一轮复习课时练习第26课时 与圆有关的计算 (含答案),共7页。
2023年中考数学一轮复习《与圆有关的计算》课时练习(含答案): 这是一份2023年中考数学一轮复习《与圆有关的计算》课时练习(含答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学一轮复习《与圆有关的性质》课时跟踪练习(含答案): 这是一份中考数学一轮复习《与圆有关的性质》课时跟踪练习(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。