![专题11 解直角三角形模型(专项突破)-原卷版第1页](http://img-preview.51jiaoxi.com/2/3/13730733/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题11 解直角三角形模型(专项突破)-原卷版第2页](http://img-preview.51jiaoxi.com/2/3/13730733/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题11 解直角三角形模型(专项突破)-原卷版第3页](http://img-preview.51jiaoxi.com/2/3/13730733/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题11 解直角三角形模型(专项突破)-解析版第1页](http://img-preview.51jiaoxi.com/2/3/13730733/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题11 解直角三角形模型(专项突破)-解析版第2页](http://img-preview.51jiaoxi.com/2/3/13730733/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题11 解直角三角形模型(专项突破)-解析版第3页](http://img-preview.51jiaoxi.com/2/3/13730733/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:九年级数学下册重要考点题型精讲精练- 一题三变系列 (人教版)
- 专题09 锐角三角函数(课后小练)-【一题三变系列】最新九年级数学下册重要考点题型精讲精练(人教版) 试卷 1 次下载
- 专题10 解直角三角形及其应用(热考题型)-【一题三变系列】最新九年级数学下册重要考点题型精讲精练(人教版) 试卷 1 次下载
- 专题10 解直角三角形及其应用(课后小练)-【一题三变系列】最新九年级数学下册重要考点题型精讲精练(人教版) 试卷 0 次下载
- 专题12 投影与视图(热考题型)-【一题三变系列】最新九年级数学下册重要考点题型精讲精练(人教版) 试卷 0 次下载
- 专题12 投影与视图(课后小练)-【一题三变系列】最新九年级数学下册重要考点题型精讲精练(人教版) 试卷 0 次下载
人教版九年级下册第二十八章 锐角三角函数28.2 解直角三角形及其应用课时练习
展开
这是一份人教版九年级下册第二十八章 锐角三角函数28.2 解直角三角形及其应用课时练习,文件包含专题11解直角三角形模型专项突破-解析版docx、专题11解直角三角形模型专项突破-原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
专项突破11 解直角三角形模型【思维导图】◎突破一 背靠背型例.(2021·甘肃武威·中考真题)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔垂直于地面,在地面上选取两处分别测得和的度数(在同一条直线上).数据收集:通过实地测量:地面上两点的距离为.问题解决:求宝塔的高度(结果保留一位小数).参考数据:,.根据上述方案及数据,请你完成求解过程.专训1.(2021·上海杨浦·一模)如图,为了测量河宽,在河的一边沿岸选取B、C两点,对岸岸边有一块石头A,在中,测得,,米,求河宽(即点A到边的距离)(结果精确到0.1米).(参考数据:,,,)专训2.(2021·四川攀枝花·九年级期末)如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32º,底部C的俯角为45º,观测点与楼的水平距离AD为31m,则楼BC的高度大约为多少米?(结果取整数).(参考数据:,,)专训3.(2021·全国·九年级专题练习)为进一步加强疫情防控工作,避免在测温过程中出现人员聚集现象,某学校决定安装红外线体温监测仪,该设备通过探测人体红外辐射能量对进入测温区域的人员进行快速测温,无需人员停留和接触,安装说明书的部分内容如表.名称红外线体温检测仪安装示意图技术参数探测最大角:∠OBC=73.14°探测最小角:∠OAC=30.97°安装要求本设备需安装在垂直于水平地面AC的支架CP上根据以上内容,解决问题:学校要求测温区域的宽度AB为4m,请你帮助学校确定该设备的安装高度OC.(结果精确到0.1m,参考数据:sin73.14°≈0.957,cos73.14°≈0.290,tan73.14°≈3.300,sin30.97°≈0.515,cos30.97°≈0.857,tan30.97°≈0.600)◎突破二 子母型例.(2021·安徽马鞍山·三模)如图,在数学综合实践活动中,某小组想要测量某条河的宽度,小组成员在专业人员的协助下利用无人机进行测量,在处测得,两点的俯角分别为45°和30°(即,).若无人机离地面的高度为120米,且点,,在同一水平直线上,求这条河的宽度.(结果精确到1米).(参考数据:,)专训1.(2020·河南师大附中九年级阶段练习)某校九年级数学兴趣小组的活动课题是“测量物体高度”.小组成员小明与小红分别采用不同的方案测量同一个底面为圆形的古塔高度,以下是他们研究报告的部分记录内容:课题:测量古塔的高度 小明的研究报告小红的研究报告图示测量方案与测量数据 用距离地面高度为1.6m的测角器测出古塔顶端的仰角为35°,再用皮尺测得测角器所在位置与古塔底部边缘的最短距离为30m.在点A用距离地面高度为1.6m的测角器测出古塔顶端的仰角为17°,然后沿AD方向走58.8m到达点B,测出古塔顶端的仰角为45°.参考数据sin35°≈0.57,cos35°≈0.82,tan35°≈0.70sin17°≈0.29,cos17°≈0.96,tan17°≈0.30,≈1.41计算古塔高度(结果精确到0.1m)30×tan35°+1.6≈22.6(m) (1)写出小红研究报告中“计算古塔高度”的解答过程;(2)数学老师说小红的结果较准确,而小明的结果与古塔的实际高度偏差较大.针对小明的测量方案分析测量发生偏差的原因;(3)利用小明与小红的测量数据,估算该古塔底面圆直径的长度为 m. 专训2.(2020·山东青岛·九年级期末)如图,某大楼的顶部竖有一块宣传牌,小明在斜坡的坡脚处测得宣传牌底部的仰角为,沿斜坡向上走到处测得宣传牌顶部的仰角为,已知斜坡的坡度,米,米,求宣传牌的高度.(测角器的高度忽略不计,参考数据:,, 专训3.(2020·四川凉山·九年级阶段练习)四川省委书记杜青林、国家旅游局副局长张希钦2006年12月16日向获得“中国优秀旅游城市”称号的西昌市授牌,并修建了标志性建筑——马踏飞燕,如图.某学习小组把测量“马踏飞燕”雕塑的最高点离地面的高度作为一次课题活动,制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕”雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B到地面的高度为,在测点C用仪器测得点B的仰角为α,前进一段距离到达测点E,再用该仪器测得点B的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.测量数据的度数的度数的长度仪器()的高31°42°3米1.65米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留到十分位).(参考数据:,,,,,) ◎突破三 拥抱型例.(2021·黑龙江大庆·一模)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43). 专训1.(2020·河南省实验中学九年级阶段练习)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高54m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进22m到达B处,测得塑像顶部D的仰角为60°.(1)求炎帝塑像DE的高度.(精确到1m.参考数据:sin34°≈0.5,cos34°≈0.8,tan34°≈0.6,1.73)(2)“景点简介”显示,“炎帝”塑像高度为63m,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.专训2.(2021·云南师大附中九年级期末)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高54m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进22m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.(精确到1m.参考数据:sin34°≈0.5,cos34°≈0.8,tan34°≈0.6,≈1.73) 专训3.(2020·山西太原·模拟预测)山西大学主校区内有一座毛主席塑像,落成于1969年12月26日.是山西大学的标志性建筑之一,目前已被列入保护文物.综合与实践小组的同学们开展了测量这一毛主席塑像高度的活动.他们在该塑像底部所在的平地上,选取一个测点,测量了塑像顶端的仰角,调高测倾器后二次测量了塑像顶端的仰角.为了减小测量误差,小组在测量仰角的度数及测倾器高度时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如下表.课题测量毛主席塑像的高度组长:XXX 组员:XXX,XXX,XXX测倾器,皮尺等成员测量工具测量示意图说明:线段的长表示塑像从最高点到地面之间的距离,为测点,线段,表示测倾器(点在上),点,,,,都在同一竖直平面内,且,;、表示两次测量的仰角,点,在上.测量数据测量项目第一次第二次平均值的度数的度数测倾器的高测倾器的高任务:(1)根据以上测量结果,请你帮助该“综合与实践”小组求出毛主席塑像的高度;(参考数据:,,,,,)(2)该综合与实践小组在制定方案时,讨论“用已知高度的侧倾器测出仰角,再测出的长来计算塑像高度”的方案,但未被采纳,你认为其原因可能是什么?(写出一条即可)
相关试卷
这是一份最新中考数学难点突破与经典模型精讲练 专题16 解直角三角形中的拥抱模型和12345模型 (全国通用),文件包含专题16解直角三角形中的拥抱模型和12345模型原卷版docx、专题16解直角三角形中的拥抱模型和12345模型解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份最新中考数学难点突破与经典模型精讲练 专题15 解直角三角形中的母抱子模型 (全国通用),文件包含专题15解直角三角形中的母抱子模型原卷版docx、专题15解直角三角形中的母抱子模型解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份第二十二章 二次函数章末检测卷-【一题三变系列】2022-2023学年九年级数学上册重要考点题型精讲精练(人教版)(解析+原卷),文件包含九年级数学上册第二十二章二次函数章末检测卷-原卷版docx、九年级数学上册第二十二章二次函数章末检测卷-解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。