终身会员
搜索
    上传资料 赚现金
    高中数学必修一 人教A版 1.1 第2课时集合的表示教学设计
    立即下载
    加入资料篮
    高中数学必修一 人教A版 1.1 第2课时集合的表示教学设计01
    高中数学必修一 人教A版 1.1 第2课时集合的表示教学设计02
    高中数学必修一 人教A版 1.1 第2课时集合的表示教学设计03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)必修 第一册1.1 集合的概念第2课时教案

    展开
    这是一份高中数学人教A版 (2019)必修 第一册1.1 集合的概念第2课时教案,共6页。

    2课时 集合的表示

     

    学 习 目 标

    核 心 素 养

    1.初步掌握集合的两种表示方法——列举法描述法感受集合语言的意义和作用(重点)

    2会用集合的两种表示方法表示一些简单集合(重点难点)

    1.通过学习描述法表示集合的方法培养数学抽象的素养

    2借助描述法转化为列举法时的运算培养数学运算的素养.

    1列举法

    把集合的所有元素一一列举出来并用花括号{}括起来表示集合的方法叫做列举法

    2描述法

    一般地A是一个集合把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{xA|P(x)}这种表示集合的方法称为描述法

    思考(1)不等式x2<3的解集中的元素有什么共同特征?

    (2)如何用描述法表示不等式x2<3的解集?

    提示(1)元素的共同特征为xRx<5.

    (2){x|x<5xR}

    1方程x24的解集用列举法表示为(  )

    A{(2,2)}   B{2,2}

    C{2}   D{2}

    B [x24x±2故用列举法可表示为{2,2}]

    2用描述法表示函数y3x1图象上的所有点的是(  )

    A{x|y3x1}   B{y|y3x1}

    C{(xy)|y3x1}   D{y3x1}

    C [该集合是点集故可表示为{(xy)|y3x1}C.]

    3用描述法表示不等式4x5<7的解集为________

    {x|x<3} [用描述法可表示为{x|x<3}]

    用列举法表示集合

    【例1 用列举法表示下列给定的集合

    (1)不大于10的非负偶数组成的集合A

    (2)小于8的质数组成的集合B

    (3)方程2x2x30的实数根组成的集合C

    (4)一次函数yx3y=-2x6的图象的交点组成的集合D.

    [] (1)不大于10的非负偶数有0,2,4,6,8,10所以A{0,2,4,6,8,10}

    (2)小于8的质数有2,3,5,7

    所以B{2,3,5,7}

    (3)方程2x2x30的实数根为-1

    所以C.

    (4)

    所以一次函数yx3y=-2x6的交点为(1,4)

    所以D{(1,4)}

    用列举法表示集合的3个步骤

    1求出集合的元素

    2把元素一一列举出来且相同元素只能列举一次

    3用花括号括起来.

    提醒二元方程组的解集函数图象上的点构成的集合都是点的集合一定要写成实数对的形式元素与元素之间用“,”隔开.{2351}.

    1用列举法表示下列集合

    (1)满足2x2xZ的元素组成的集合A

    (2)方程(x2)2(x3)0的解组成的集合M

    (3)方程组的解组成的集合B

    (4)15的正约数组成的集合N.

    [] (1)满足-2x2xZ的元素有-21,0,1,2A{21,0,1,2}

    (2)方程(x2)2(x3)0的解为x2x3

    M{2,3}

    (3)B{(3,2)}

    (4)15的正约数有1,3,5,15N{1,3,5,15}

    用描述法表示集合

    【例2】 用描述法表示下列集合:

    (1)1大又比10小的实数组成的集合;

    (2)平面直角坐标系中第二象限内的点组成的集合;

    (3)3除余数等于1的正整数组成的集合

    [] (1){xR|1<x<10}

    (2)集合的代表元素是点用描述法可表示为{(xy)|x<0y>0}

    (3){x|x3n1nN}

    描述法表示集合的2个步骤

    2.用描述法表示下列集合

    (1)函数y=-2x2x图象上的所有点组成的集合;

    (2)不等式2x3<5的解组成的集合;

    (3)如图中阴影部分的点(含边界)的集合;

    (4)34的所有正的公倍数构成的集合

    [] (1)函数y=-2x2x的图象上的所有点组成的集合可表示为{(xy)|y=-2x2x}

    (2)不等式2x3<5的解组成的集合可表示为{x|2x3<5}{x|x<4}

    (3)图中阴影部分的点(含边界)的集合可表示为.

    (4)34的最小公倍数是12因此34的所有正的公倍数构成的集合是{x|x12nnN*}

    ,

    集合表示方法的综合应用

    [探究问题]

    下面三个集合:

    {x|yx21}{y|yx21}{(xy)|yx21}

    (1)它们各自的含义是什么?

    (2)它们是不是相同的集合?

    提示(1)集合{x|yx21}的代表元素是x满足条件yx21中的xR所以实质上{x|yx21}R

    集合的代表元素是y满足条件yx21y的取值范围是y1所以实质上{y|yx21}{y|y1}

    集合{(xy)|yx21}的代表元素是(xy)可以认为是满足yx21的数对(xy)的集合也可以认为是坐标平面内的点(xy)构成的集合且这些点的坐标满足yx21所以{(xy)|yx21}{P|P是抛物线yx21上的点}

    (2)(1)中三个集合各自的含义知它们是不同的集合

    【例3 集合A{x|kx28x160}若集合A中只有一个元素求实数k的值组成的集合

    [思路点拨] 

    [] (1)k0方程kx28x160变为-8x160解得x2满足题意;

    (2)k0要使集合A{x|kx28x160}中只有一个元素则方程kx28x160只有一个实数根所以Δ6464k0解得k1此时集合A{4}满足题意

    综上所述k0k1故实数k的值组成的集合为{0,1}

    1(变条件)本例若将条件只有一个元素改为有两个元素”,其他条件不变求实数k的值组成的集合

    [] 由题意可知方程kx28x160有两个不等实根k<1k0.

    所以实数k组成的集合为{k|k<1k0}

    2(变条件)本例若将条件只有一个元素改为至少有一个元素”,其他条件不变求实数k的取值集合

    [] 由题意可知方程kx28x160至少有一个实数根

    k0由-8x160x2符合题意;

    k0要使方程kx28x160至少有一个实数根Δ6464k0k1.

    综合①②可知实数k的取值集合为{k|k1}

    1若已知集合是用描述法给出的读懂集合的代表元素及其属性是解题的关键如例3中集合A中的元素就是所给方程的根由此便把集合的元素个数问题转化为方程的根的个数问题

    2在学习过程中要注意数学素养的培养如本例中用到了等价转化思想和分类讨论的思想

    1表示一个集合可以用列举法也可以用描述法一般地若集合元素为有限个常用列举法集合元素为无限个多用描述法

    2处理描述法给出的集合问题时首先要明确集合的代表元素特别要分清数集和点集;其次要确定元素满足的条件是什么.

    1思考辨析

    (1){1}1.(  )

    (2){(1,2)}{x1y2}(  )

    (3){xR|x>1}{yR|y>1}(  )

    (4){x|x21}{1,1}(  )

    [答案] (1)× (2)× (3) (4)

    2由大于-3且小于11的偶数所组成的集合是(  )

    A{x|3<x<11xZ}

    B{x|3<x<11}

    C{x|3<x<11x2k}

    D{x|3<x<11x2kkZ}

    D [由题意可知满足题设条件的只有选项D故选D.]

    3一次函数yx3y=-2x的图象的交点组成的集合是(  )

    A{12}     B{x1y=-2}

    C{(2,1)}   D{(12)}

    D [两函数图象的交点组成的集合是{(12)}]

    4设集合A{x|x23xa0}4A试用列举法表示集合A.

    [] 4A1612a0a=-4

    A{x|x23x40}{1,4}

     

    相关教案

    湘教版(2019)必修 第一册1.1 集合优秀第2课时教案: 这是一份湘教版(2019)必修 第一册1.1 集合优秀第2课时教案,共7页。教案主要包含了新课导入,探究新知,知识点解析,巩固练习,课堂小结等内容,欢迎下载使用。

    高中7.3* 复数的三角表示教学设计: 这是一份高中7.3* 复数的三角表示教学设计,共13页。教案主要包含了本节内容分析,学情整体分析,教学活动准备,教学活动设计等内容,欢迎下载使用。

    2021学年1.1.1 集合及其表示方法第2课时教学设计: 这是一份2021学年1.1.1 集合及其表示方法第2课时教学设计,共6页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map