搜索
    上传资料 赚现金
    【最新版】高中数学(新人教B版)教案+同步课件第二课时 函数的表示方法
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      第二课时 函数的表示方法.pptx
    • 第二课时 函数的表示方法.doc
    【最新版】高中数学(新人教B版)教案+同步课件第二课时 函数的表示方法01
    【最新版】高中数学(新人教B版)教案+同步课件第二课时 函数的表示方法02
    【最新版】高中数学(新人教B版)教案+同步课件第二课时 函数的表示方法03
    【最新版】高中数学(新人教B版)教案+同步课件第二课时 函数的表示方法04
    【最新版】高中数学(新人教B版)教案+同步课件第二课时 函数的表示方法05
    【最新版】高中数学(新人教B版)教案+同步课件第二课时 函数的表示方法06
    【最新版】高中数学(新人教B版)教案+同步课件第二课时 函数的表示方法07
    【最新版】高中数学(新人教B版)教案+同步课件第二课时 函数的表示方法08
    【最新版】高中数学(新人教B版)教案+同步课件第二课时 函数的表示方法01
    【最新版】高中数学(新人教B版)教案+同步课件第二课时 函数的表示方法02
    【最新版】高中数学(新人教B版)教案+同步课件第二课时 函数的表示方法03
    还剩48页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学必修 第一册3.3 函数的应用(一)评课ppt课件

    展开
    这是一份数学必修 第一册3.3 函数的应用(一)评课ppt课件,文件包含第二课时函数的表示方法pptx、第二课时函数的表示方法doc等2份课件配套教学资源,其中PPT共56页, 欢迎下载使用。

    1.掌握函数的三种表示法:解析法、列表法、图像法以及各自的优缺点.2.在实际情境中,会根据不同的需要选择恰当的方法表示函数.3.通过具体实例,了解简单的分段函数,并能简单应用.
    1.结合实例,经历函数三种表示法的抽象过程,体会三种表示法的作用,培养学生的数学抽象素养.2.结合实例,加深对分段函数概念的理解及应用,提升逻辑推理、数学运算素养.
    问题导学预习教材必备知识探究
    互动合作研析题型关键能力提升
    拓展延伸分层精练核心素养达成
    WEN TI DAO XUE YU XI JIAO CAI BI BEI ZHI SHI TAN JIU
    问题导学预习教材 必备知识探究
    一、函数的表示方法1.思考 (1)若京沪高速铁路时速按300千米/时计算,火车行驶x小时后,路程为y千米,可以用y=300x来表示.(2)如图是我国人口出生率变化曲线:
    (3)下表是大气中氰化物浓度与污染源距离的关系表:
    问题:根据初中学过的知识,说出问题(1)、(2)、(3)分别是用什么法表示函数的?提示 问题(1)、(2)、(3)分别是用解析法、图像法、列表法表示函数的.
    2.填空 (1)解析法:在函数y=f(x)中,如果f(x)是用____________________来表示的,这种表示函数的方法称为解析法.(2)列表法:用______的形式给出了函数的对应关系,这种表示函数的方法称为列表法.(3)图像法①图像法:用函数的______表示函数的方法称为图像法.②作函数图像的方法ⅰ.描点作图法:实际作图时,经常先描出函数图像上一些有代表性的点,然后再根据有关性质作出函数图像,这称为描点作图法.其步骤是__________________.
    温馨提醒 (1)解析法:利用解析法表示函数的前提是变量间的对应关系明确,且利用解析法表示函数时要注意注明其定义域.(2)图像法:图像既可以是连续的曲线,也可以是离散的点.(3)列表法:采用列表法的前提是函数值对应清楚,选取的自变量要有代表性.
    3.做一做 (1)已知函数f(x)由下表给出,则f(11)=________.
    (2)已知函数f(x)的图像如图所示,其中点A,B的坐标分别为(0,3),(3,0),则f(f(0))=________.
    二、分段函数1.思考 根据实数绝对值的含义将函数y=|x+1|中的绝对值号去掉,变形后的函数是什么形式?
    2.填空 (1)分段函数:如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同的______方式,则称其为分段函数.(2)常数函数:值域只有______元素的函数,这类函数通常称为常数函数.也就是说,常数函数中所有自变量对应的函数值都相等.
    温馨提醒 分段函数是一个函数,而不是几个函数,要注意分段函数的定义域、值域和图像的理解:(1)定义域:各段自变量取值范围的并集,注意各段自变量取值范围的交集为空集.(2)值域:各段函数在相应区间上函数取值集合的并集.(3)图像:根据不同定义域上的解析式分别作出,再将它们组合在一起得到整个分段函数的图像.
    HU DONG HE ZUO YAN XI TI XING GUAN JIAN MENG LI TI SHENG
    互动合作研析题型 关键能力提升
    例1 某商场新进了10台彩电,每台售价3 000元,试求售出台数x与收款数y之间的函数关系,分别用列表法、图像法、解析法表示出来.
    题型一 三种表示法的应用
    (3)解析法:y=3 000x,x∈{1,2,3,…,10}.
    理解函数表示法的三个关注点(1)列表法、图像法、解析法均是函数的表示法,无论是哪种方式表示函数,都必须满足函数的概念.(2)列表法更直观形象,图像法从形的角度描述函数,解析法从数的角度描述函数.(3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.
    训练1 将一条长为10 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形.试用多种方法表示两个正方形的面积之和S与其中一段铁丝长x(x∈N+)的函数关系.
    解 这个函数的定义域为{x|1≤x<10,x∈N+}.
    角度1 换元法(配凑法)求函数解析式
    例2 求下列函数的解析式:
    角度2 用待定系数法求函数解析式
    例3 (1)已知f(x)是一次函数,且f[f(x)]=16x-25,求f(x);
    (2)已知f(x)为二次函数,且f(x+1)+f(x-1)=2x2-4x,求f(x).
    角度3 消元法(或解方程组法)求函数解析式
    例4 已知定义在区间(-1,1)上的函数f(x)满足2f(x)-f(-x)=x2,求f(x)的解析式.
    解 ∵对任意的x∈(-1,1)有-x∈(-1,1),由2f(x)-f(-x)=x2,①得2f(-x)-f(x)=(-x)2,②①×2+②消去f(-x)得3f(x)=3x2,∴f(x)=x2(-11.已知f[g(x)]=h(x)求f(x),常用的有两种方法: (1)换元法,即令t=g(x)解出x,代入h(x)中得到一个含t的解析式,即为函数解析式,注意换元后新元的范围. (2)配凑法,即从f[g(x)]的解析式中配凑出“g(x)”,即用g(x)来表示h(x),然后将解析式中的g(x)用x代替即可.2.方程组法:当同一个对应关系中的含有自变量的两个表达式之间有互为相反数或互为倒数关系时,可构造方程组求解.3.待定系数法求函数解析式: 已知所要求的f(x)的类型,如一次函数、二次函数等,即可设出f(x)的解析式,再根据条件列方程(或方程组),通过解方程(组)求出待定系数,进而求出函数解析式.
    训练2 (1)已知函数f(x+1)=3x+2,求f(x);
    解 法一(换元法) 令x+1=t,
    ∴x=t-1,∴f(t)=3(t-1)+2=3t-1,∴f(x)=3x-1.
    法二(配凑法) f(x+1)=3x+2=3(x+1)-1,∴f(x)=3x-1.
    题型三 分段函数求值问题
    迁移 (1)例5条件不变,若f(a)=3,求实数a的值.
    解 ①当a≤-2时,f(a)=a+1=3,即a=2>-2,不合题意,舍去;
    (2)例5的条件不变,若f(x)>2x,求x的取值范围.
    解 ①当x≤-2时,f(x)>2x可化为x+1>2x,即x<1,所以x≤-2;
    ②当-22x可化为3x+5>2x,即x>-5,所以-22x可化为2x-1>2x,则x∈∅.综上,x的取值范围是{x|x<2}.
    1.求分段函数函数值的方法(1)先确定要求值的自变量属于哪一段区间.(2)然后代入该段的解析式求值,直到求出值为止.当出现f[f(x0)]的形式时,应从内到外依次求值.2.已知分段函数的函数值求对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验函数解析式的适用范围,也可先判断每一段上的函数值的范围,确定解析式再求解.
    解析 f (5)=f[f(10)],f(10)=f[f(15)]=f(18)=21,∴f(5)=f(21)=24.故选A.
    解析 当a≤-2时,a<-3,∴a<-3;当-21.函数三种表示法的优缺点
    2.用三种方法表示函数时的注意点:(1)解析法必须注明函数的定义域;(2)列表法必须罗列出所有的自变量的值与函数值的对应关系;(3)图像法必须清楚函数图像是“点”还是“线”.3.理解分段函数要注意的几个方面:(1)分段函数是一个函数,而不是几个函数;(2)处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系;(3)分段函数的定义域是所有自变量取值区间的并集;(4)分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.
    TUO ZHAN YAN SHEN FEN CENG JING LIAN HE XING SU YANG DA CHENG
    拓展延伸分层精练 核心素养达成
    4.已知函数y=f(x)的对应关系如下表,函数y=g(x)的图像是如图所示的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f[g(2)]=(  )
    A.3 B.2 C.1 D.0
    解析 由题图知g(2)=1,∴f[g(2)]=f(1)=2.故选B.
    解析 f(-2 022)=0,∴f[f(-2 022)]=f(0)=π,∴f{f[f(-2 022)]}=f(π)=π2+1.
    8.已知函数f(x),g(x)分别由下表给出:
    则f[g(1)]的值为________;满足f[g(x)]>g[f(x)]的x的值是________.
    解析 由表中对应值,知f[g(1)]=f(3)=1.当x=1时,f[g(1)]=1,g[f(1)]=g(1)=3,不满足条件;当x=2时,f[g(2)]=f(2)=3,g[f(2)]=g(3)=1,满足条件;当x=3时,f[g(3)]=f(1)=1,g[f(3)]=g(1)=3,不满足条件;所以满足f[g(x)]>g[f(x)]的x的值是2.
    9.求下列函数的解析式:
    (2)求函数的定义域、值域.
    解 作出图像如图所示.利用数形结合易知f(x)的定义域为[-1,+∞),值域为(-1,2]∪{3}.
    解析 作出函数f(x)的图像如图:
    A.将f(x)的图像向右平移一个单位即可得到f(x-1)的图像,则A正确;B.∵f(x)>0,∴|f(x)|=f(x),图像不变,则B错误;C.y=f(-x)与y=f(x)关于y轴对称,则C正确;D.f(|x|)的图像是把函数f(x)的图像保留y轴右边的,左边的去掉,再把右边的做关于y轴的对称,则D正确.故选ACD.
    13.如图所示,有一块边长为a的正方形铁皮,将其四角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出此盒子的体积V以x为自变量的函数式,并指明这个函数的定义域.
    解 由题意可知该盒子的底面是边长为(a-2x)的正方形,高为x,
    所以此盒子的体积V=(a-2x)2·x=x(a-2x)2,
    14.已知函数f(x)由表给出,则f(f(2))=________,满足f(f(x))>1的x的值是________.
    解析 由题中的表格可知:当x=1时,f(1)=2,则f(f(1))=f(2)=3>1,所以x=1满足题意;当x=2时,f(2)=3,则f(f(2))=f(3)=1=1,所以x=2不满足题意;当x=3时,f(3)=1,则f(f(3))=f(1)=2>1,所以x=3满足题意.综上,f(f(2))=1,满足f(f(x))>1的x的值为1或3.
    相关课件

    2021学年第二章 平面解析几何2.1 坐标法授课课件ppt: 这是一份2021学年第二章 平面解析几何2.1 坐标法授课课件ppt,文件包含21坐标法pptx、21坐标法DOCX等2份课件配套教学资源,其中PPT共37页, 欢迎下载使用。

    【最新版】高中数学(新人教B版)习题+同步课件限时小练19 函数的表示方法: 这是一份【最新版】高中数学(新人教B版)习题+同步课件限时小练19 函数的表示方法,文件包含限时小练19函数的表示方法pptx、限时小练19函数的表示方法doc等2份课件配套教学资源,其中PPT共7页, 欢迎下载使用。

    人教B版 (2019)必修 第一册第三章 函数3.3 函数的应用(一)图片课件ppt: 这是一份人教B版 (2019)必修 第一册第三章 函数3.3 函数的应用(一)图片课件ppt,文件包含第二课时函数的最大小值pptx、第二课时函数的最大小值doc等2份课件配套教学资源,其中PPT共40页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【最新版】高中数学(新人教B版)教案+同步课件第二课时 函数的表示方法
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map