数学九年级上册23.3 课题学习 图案设计巩固练习
展开23.3 课题学习 图案设计
基础题
知识点1 分析图案形成过程
1.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图的是( )
A. B.
C. D.
2.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是( )
3.如图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的是( )
A. B. C. D.
4.如图所示,这个图案可以看作是以“基本图案”——原图案的四分之一经过变换形成的,但一定不能通过________变换得到.( )
A.旋转
B.轴对称
C.平移
D.对称和旋转
5.下列这些美丽的图案都是在“几何画板”软件中利用旋转的知识在一个图案的基础上加工而成的,每一个图案都可以看作是它的“基本图案”绕着它的旋转中心旋转得来的,旋转的角度为( )
A.30° B.60° C.90° D.120°
知识点2 设计图案
6.如图,在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中设计符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).
(1)是轴对称图形又是中心对称图形;
(2)是轴对称图形但不是中心对称图形;
(3)是中心对称图形但不是轴对称图形.
(1)
(2)
(3)
7.以给出的图形“○、○、△、△、=”(两个相同的圆、两个相同的三角形、两条平行线)为构件,各设计一个构思独特且有意义的轴对称图形和中心对称图形.举例:如图所示,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.
中档题
8.(长沙中考)下列四个图形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是( )
9.观察如图所摆放的五朵梅花,变换中间的一朵梅花,得到四角的梅花,下列说法错误的是( )
A.左上角梅花只需沿对角线平移即可
B.右上角梅花沿对角线平移后,顺时针旋转90°
C.右下角梅花沿对角线平移后,以下底边为对称轴对称得到的
D.左下角梅花先沿对角线平移后,顺时针旋转90°
10.正五角星绕着它的中心至少旋转________可以与原图形重合.
11.如图是两张全等的图案,它们完全重合地叠放在一起,按住下面的图案不动,将上面图案绕点O顺时针旋转,至少旋转________度后,两张图案构成的图形是中心对称图形.
12.如图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°,180°,270°,并画出它在各象限内的图形.
13.如图1是由2个白色和2个黑色全等正方形组成的“L”型图案,请你分别在图2,图3上按下列要求画图:
(1)在图2中,添1个白色或黑色正方形,使它成中心对称图案;
(2)在图3中,先改变1个正方形的位置,再添1个白色或黑色正方形,使它既成中心对称图案,又成轴对称图案.
14.如图是由14个全等的三角形组成的图案,是由阴影部分的三角形通过平移、轴对称或旋转而得到的,试分析这个图案形成的过程.
综合题
15.山西民间建筑的门窗图案中,隐含着丰富的数学艺术之美.图1是其中一个代表,该窗格图案是以图2为基本图案经过图形变换得到的.图3是图2放大后的一部分,虚线给出了作图提示.请用圆规和直尺画图.
(1)根据图2将图3补充完整;
(2)在图4的正方形中,用圆弧和线段设计一个美观的轴对称或中心对称图形.
参考答案
基础题
1.C 2.C 3.B 4.C 5.C
6.答案不唯一,图略.
7.答案不唯一,下面各举一例:
(1)只是轴对称图形;(2)只是中心对称图形;(3)既是轴对称图形又是中心对称图形.
中档题
8.A 9.D 10.72° 11.60
12.图略.
13.(1)图略.(2)图略.
14.可以看成按如下步骤形成的:①以一个三角形的一条边为对称轴作与它轴对称的图形;②将所得的图形以一边的中点为旋转中心旋转180°;③以①,②所得的两组图形为基本图形作轴对称图形;④再以此为基本图形绕某一点为中心旋转180°.
综合题
15.图略.
初中数学人教版九年级上册23.3 课题学习 图案设计课后练习题: 这是一份初中数学人教版九年级上册23.3 课题学习 图案设计课后练习题,共3页。
人教版九年级上册23.3 课题学习 图案设计课后练习题: 这是一份人教版九年级上册23.3 课题学习 图案设计课后练习题,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学人教版九年级上册23.3 课题学习 图案设计精品课后复习题: 这是一份初中数学人教版九年级上册23.3 课题学习 图案设计精品课后复习题,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。