数学九年级下册3 垂径定理备课课件ppt
展开
这是一份数学九年级下册3 垂径定理备课课件ppt,共14页。PPT课件主要包含了问题情境,活动一,活动二,活动三,又∵ACAB,∴AEAD,巩固训练,判断下列说法的正误,今日作业等内容,欢迎下载使用。
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
赵州桥主桥拱的半径是多少?
把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?
可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.(1)圆是轴对称图形吗?如果是,它的对称轴是什么?(2)你能发现图中有那些相等的线段和弧?为什么?
(1)是轴对称图形.直径CD所在的直线是它的对称轴
(2) 线段: AE=BE
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
解得:R≈27.9(m)
解决求赵州桥拱半径的问题
在Rt△OAD中,由勾股定理,得
即 R2=18.72+(R-7.2)2
∴赵州桥的主桥拱半径约为27.9m.
OA2=AD2+OD2
1.如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.
答:⊙O的半径为5cm.
2.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.
∴四边形ADOE为矩形,
∴ 四边形ADOE为正方形.
①平分弧的直径必平分弧所对的弦
②平分弦的直线必垂直弦
③垂直于弦的直径平分这条弦
④平分弦的直径垂直于这条弦
⑤弦的垂直平分线是圆的直径
⑥平分弦所对的一条弧的直径必垂直这条弦
⑦在圆中,如果一条直线经过圆心且平分弦, 必平分此弦所对的弧
⑧分别过弦的三等分点作弦的垂线,将弦所对 的两条弧分别三等分
弓形的弦长为6cm,弓形的高为2cm,则这弓形所在的圆的半径为 .
1、教材95页习题24.1 7、8、9;2、引领训练46-48
相关课件
这是一份北师大版3 垂径定理课文配套课件ppt,共28页。PPT课件主要包含了两个条件缺一不可,应用实际,巩固练习,布置作业等内容,欢迎下载使用。
这是一份数学北师大版3 垂径定理课前预习ppt课件,共12页。PPT课件主要包含了它有无数条对称轴,试一试,变式训练,变式一,变式二,垂径定理的常见图形,随堂练习2等内容,欢迎下载使用。
这是一份初中数学北师大版九年级下册3 垂径定理课文课件ppt,文件包含33垂径定理pptx、33垂径定理doc等2份课件配套教学资源,其中PPT共22页, 欢迎下载使用。