冀教版七年级下册第八章 整式乘法综合与测试课后测评
展开这是一份冀教版七年级下册第八章 整式乘法综合与测试课后测评,共17页。试卷主要包含了的计算结果是,在下列运算中,正确的是,下列运算正确的是,计算等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、若,则代数式的值为( )
A.6 B.8 C.12 D.16
2、下列计算正确的是( )
A.a4+a3=a7 B.a4•a3=a7 C.a4÷a3=1 D.(﹣2a3)4=8a12
3、计算的结果是( )
A. B. C. D.
4、的计算结果是( )
A. B. C. D.
5、在下列运算中,正确的是( )
A.(x4)2=x6 B.x3⋅x2=x6 C.x2+x2=2x4 D.x6⋅x2=x8
6、下列运算正确的是( )
A.(﹣a)2=﹣a2 B.2a2﹣a2=2
C.a2•a=a3 D.(a﹣1)2=a2﹣1
7、下列运算正确的是( )
A. B. C. D.
8、计算(3x2y)2的结果是( )
A.6x2y2 B.9x2y2 C.9x4y2 D.x4y2
9、数字2500000用科学记数法为( )
A.0.25×107 B.2.5×107 C.2.5×106 D.25×105
10、一种花粉颗粒直径约为0.0000075米,将数据0.0000075用科学计数法表示为( )
A. B. C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、如图1,将一个长为2a,宽为2b的长方形沿图中虚线剪开分成四个完全相同的小长方形,然后将这四个完全相同的小长方形拼成一个正方形(如图2),设图2中的大正方形面积为,小正方形面积为,则的结果是________(用含a,b的式子表示).
2、化简:(8x3y3﹣4x2y2)÷2xy2=_____.
3、近年来,重庆成为了众多游客前来旅游的网红城市.某商场根据游客的喜好,推出A、两种土特产礼盒,A种礼盒内有3袋磁器口麻花,3包火锅底料;种礼盒里有2袋磁器口麻花,3包火锅底料,2袋合川桃片.两种礼盒每盒成本价分别为盒内所有土特产的成本价之和.已知每袋合川桃片的成本价是每包火锅底料成本价的一半,A种礼盒每盒的售价为108元,利润率为.今年10月1日卖出A、两种礼盒共计80盒,工作人员在核算当日卖出礼盒总成本时把磁器口麻花和火锅底料的成本价看反了,导致当日卖出礼盒的实际总成本比核算时的成本少了280元,则当日卖出礼盒的实际总成本为 __元.
4、用科学记数法表示1234.5为___.
5、将数13140000用科学记数法表示为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、(1)在数学中,完全平方公式是比较熟悉的,例如.若,,则______;
(2)如图1,线段AB上有一点C,以AC、CB为直角边在上方分别作等腰直角三角形ACE和CBF,已知,,的面积为6,设,,求与的面积之和;
(3)如图2,两个正方形ABCD和EFGH重叠放置,两条边的交点分别为M、N.AB的延长线与FG交于点Q,CB的延长线与EF交于点P,已知,,阴影部分的两个正方形EPBM和BQGN的面积之和为60,则正方形ABCD和EFGH的重叠部分的长方形BMHN的面积为______.
2、计算:.
3、计算:
(1);
(2).
4、先化简,再求值:(3a+b)( b-3a)+(3a-b)2,其中a=2,b=-1.
5、计算题
(1)
(2)
-参考答案-
一、单选题
1、D
【解析】
【分析】
对已知条件变形为:,然后等式两边再同时平方即可求解.
【详解】
解:由已知条件可知:,
上述等式两边平方得到:,
整理得到:,
故选:D.
【点睛】
本题考查了等式恒等变形,完全平方公式的求值等,属于基础题,计算过程中细心即可.
2、B
【解析】
【分析】
根据合并同类项法则、同底数幂乘法法则、同底数幂除法法则及积的乘方法则依次计算判断.
【详解】
解:A、a4与a3不是同类项,不能合并,故该项不符合题意;
B、a4•a3=a7,故该项符合题意;
C、a4÷a3=a,故该项不符合题意;
D、(﹣2a3)4=16a12,故该项不符合题意;
故选:B.
【点睛】
此题考查了整式的计算法则,熟记合并同类项法则、同底数幂乘法法则、同底数幂除法法则及积的乘方法则是解题的关键.
3、D
【解析】
【分析】
利用单项式除以单项式法则,即可求解.
【详解】
解:.
故选:D
【点睛】
本题主要考查了单项式除以单项式,熟练掌握单项式除以单项式法则是解题的关键.
4、D
【解析】
【分析】
原式化为,根据平方差公式进行求解即可.
【详解】
解:
故选D.
【点睛】
本题考查了平方差公式的应用.解题的关键与难点在于应用平方差公式.
5、D
【解析】
【分析】
由题意依据幂的乘方和同底数幂的乘法以及合并同类项逐项进行判断即可.
【详解】
解:A. (x4)2=x8,故A选项错误;
B. x3⋅x2=x5,故B选项错误;
C. x2+x2=2x2,故C选项错误;
D. x6⋅x2=x8,故D选项正确.
故选:D.
【点睛】
本题考查幂的运算和整式的加法,熟练掌握幂的乘方和同底数幂的乘法以及合并同类项运算法则是解题的关键.
6、C
【解析】
【分析】
根据乘方的意义,合并同类项,同底数幂的乘法,完全平方公式逐项分析即可.
【详解】
解:A.(﹣a)2=a2,故不正确;
B. 2a2﹣a2=a2,故不正确;
C. a2•a=a3,正确;
D.(a﹣1)2=a2﹣2 a +1,故不正确;
故选C.
【点睛】
本题考查了整式的运算,熟练掌握运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.完全平方公式是(a±b)2=a2±2ab+b2.
7、A
【解析】
【分析】
根据幂的乘方,同底幂相除,合并同类项,同底数幂相乘逐项判断即可求解.
【详解】
解:A、,故本选项正确,符合题意;
B、,故本选项错误,不符合题意;
C、 和 不是同类项,不能合并,故本选项错误,不符合题意;
D、,故本选项错误,不符合题意;
故选:A
【点睛】
本题主要考查了幂的乘方,同底幂相除,合并同类项,同底数幂相乘,熟练掌握相关运算法则是解题的关键.
8、C
【解析】
【分析】
直接利用积的乘方和幂的乘方运算法则计算得出答案.
【详解】
解:(3x2y)2=9x4y2.
故选:C.
【点睛】
此题主要考查了积的乘方和幂的乘方运算,正确掌握相关运算法则是解题关键.
9、C
【解析】
【分析】
用科学记数法表示成的形式,其中,,代入可得结果.
【详解】
解:的绝对值大于表示成的形式
,
表示成
故选C.
【点睛】
本题考查了科学记数法.解题的关键在于确定的值.
10、A
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.0000075=7.5×10-6,
故选:A.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
二、填空题
1、4ab
【解析】
【分析】
组合后多出来的面积就是中间小正方形的面积,用大正方形减小正方形的得到原来长方形面积.
【详解】
∵为图2大正方形的面积;为小正方形面积,
∴为图1长方形面积
∴=2a×2b=4ab
故答案为:4ab
【点睛】
本题考查列代数式在求正方形面积中的应用,找到两者之差是图1长方形面积是关键.
2、
【解析】
【分析】
多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,根据运算法则进行运算即可.
【详解】
解:(8x3y3﹣4x2y2)÷2xy2
故答案为:
【点睛】
本题考查的是多项式除以单项式,掌握“多项式除以单项式的法则”是解本题的关键.
3、6920
【解析】
【分析】
根据A种礼盒每盒的售价为108元,利润率为可得1袋磁器口麻花,1包火锅底料的成本价是30元,设1袋磁器口麻花成本价是元,则1包火锅底料的成本价是元,每袋合川桃片的成本价元,设今年10月1日卖出A种礼盒盒,则卖出中礼盒盒,由工作人员在核算当日卖出礼盒总成本时把磁器口麻花和火锅底料的成本价看反了,导致当日卖出礼盒的实际总成本比核算时的成本少了280元,可得,化简整理得:,从而可求出当日卖出礼盒的实际总成本.
【详解】
种礼盒每盒的售价为108元,利润率为,
种礼盒每盒的成本价为(元,即3袋磁器口麻花,3包火锅底料成本价为90元,
袋磁器口麻花,1包火锅底料的成本价是30元,
设1袋磁器口麻花成本价是元,则1包火锅底料的成本价是元,
∵每袋合川桃片的成本价是每包火锅底料成本价的一半,
每袋合川桃片的成本价元,
每盒种礼盒成本价是,
设今年10月1日卖出A种礼盒盒,则卖出中礼盒盒,根据题意可得:
,
化简整理得:,
当日卖出礼盒的实际总成本为:
元
故答案为:6920.
【点睛】
本题考查了一元一次方程的应用,整式的运算、代数式的知识,解题的关键熟练掌握整式乘法的性质,从而完成求解.
4、
【解析】
【分析】
科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值大于10时,是正数;当原数的绝对值小于1时,是负数.
【详解】
1 .
故答案为:
【点睛】
用科学记数法表示一个数的方法是:
(1)确定是只有一位整数的数;
(2)确定:当原数的绝对值时,为正整数,等于原数的整数位数减1;当原数的绝对值时,为负整数,的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上零).
5、
【解析】
【分析】
用科学记数法表示较大的数时,一般形式为,其中,为整数.
【详解】
.
故答案为:
【点睛】
本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数,确定与的值是解题的关键.
三、解答题
1、(1)13;(2);(3)22.
【解析】
【分析】
(1)根据完全平方公式变形得出即可;
(2)设,,根据等腰直角三角形ACE和CBF,得出AC=EC=a,BC=CF=b,根据,得出,,利用公式变形得出即可;
(3)设BM=m,BN=n,根据S矩形BNHM=mn,S正方形EPBM+S正方形BQGN=m2+n2=60,根据四边形ABCD为正方形,AB=BC,列等式m+7=n+3,得出n-m=4,根据公式变形得出即可.
【详解】
解:(1),
故答案为:13;
(2)设,,
∵等腰直角三角形ACE和CBF,
∴AC=EC=a,BC=CF=b,
∵,
∴,
∵S△ACF=,
∴,
S△ACE+S△CBF=,
∵,
∴S△ACE+S△CBF=;
(3)设BM=m,BN=n,
∵S矩形BNHM=mn,S正方形EPBM+S正方形BQGN=m2+n2=60,四边形ABCD为正方形,AB=BC,
∴m+7=n+3,
∴n-m=4,
∵,
∴,
∴S矩形BNHM=mn=22.
故答案为:22.
【点睛】
本题考查完全平方公式变形应用,掌握公式变形应用的方法,数形结合,识别出题者意图是解题的突破口.
2、.
【解析】
【分析】
先计算积的乘方,再计算乘方、负整数指数幂、乘法运算即可得.
【详解】
解:原式
.
【点睛】
本题考查了积的乘方、负整数指数幂等知识点,熟练掌握各运算法则是解题关键.
3、 (1)
(2)
【解析】
【分析】
(1)先算除法和乘法,再合并同类项即可;
(2)先计算多项式与多项式的乘法、单项式与多项式的乘法,然后去括号合并同类项
(1)
解:原式;
(2)
解:原式
.
【点睛】
本题考查了整式的四则混合运算,熟练掌握运算顺序是解答本题的关键.四则混合运算的顺序是先算乘除,再算加减;同级运算,按从左到右的顺序计算.
4、;
【解析】
【分析】
根据平方差公式和完全平方公式计算,再合并同类项,代入数值计算即可.
【详解】
解: 原式=b2-9a2+9a2-6ab+b2
=2b2-6ab.
当a=2,b=-1时,
原式=2×(-1)2-6×2×(-1)=14.
【点睛】
此题考查了整式混合运算的化简求值,正确掌握整式的平方差公式和完全平方公式是解题的关键.
5、 (1)
(2)
【解析】
【分析】
(1)把多项式的每一项与单项式相乘,再合并即可求解;
(2)先用第一个多项式的每一项分别乘以另一个多项式的每一项,再合并即可求解.
(1)
(2)
.
【点睛】
本题主要考查了整式的乘法运算,熟练掌握单项式乘以多项式,多项式乘以多项式法则是解题的关键.
相关试卷
这是一份初中数学第八章 整式乘法综合与测试综合训练题,共15页。试卷主要包含了下列运算一定正确的是,下列运算正确的是,下列计算正确的是.A.B.等内容,欢迎下载使用。
这是一份初中冀教版第八章 整式乘法综合与测试同步训练题,共15页。试卷主要包含了若,则的值是,纳米,下列运算正确的是等内容,欢迎下载使用。
这是一份2021学年第八章 整式乘法综合与测试一课一练,共16页。试卷主要包含了下列运算正确的是,纳米等内容,欢迎下载使用。

