搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数单元测试练习题(精选含解析)

    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数单元测试练习题(精选含解析)第1页
    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数单元测试练习题(精选含解析)第2页
    2021-2022学年基础强化冀教版八年级数学下册第二十一章一次函数单元测试练习题(精选含解析)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版八年级下册第二十一章 一次函数综合与测试单元测试当堂检测题

    展开

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试单元测试当堂检测题,共32页。试卷主要包含了下列不能表示是的函数的是,下列函数中,属于正比例函数的是等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数单元测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )
    x(单位:台)
    10
    20
    30
    y(单位:万元/台)
    60
    55
    50
    A.y=80- 2x B.y=40+ 2x
    C.y=65- D.y=60-
    2、关于函数y=-2x+1,下列结论正确的是( )
    A.图像经过点 B.y随x的增大而增大
    C.图像不经过第四象限 D.图像与直线y=-2x平行
    3、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( )

    A.小豪爸爸出发后12min追上小豪 B.小李爸爸的速度为300m/min
    C.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m
    4、下列函数中,y是x的一次函数的是(  )
    A.y= B.y=﹣3x+1 C.y=2 D.y=x2+1
    5、已知点和点在一次函数的图象上,且,下列四个选项中k的值可能是( )
    A.-3 B.-1 C.1 D.3
    6、下列不能表示是的函数的是( )
    A.

    0
    5
    10
    15

    3
    3.5
    4
    4.5
    B.
    C.
    D.
    7、关于一次函数,下列结论不正确的是( )
    A.图象与直线平行
    B.图象与轴的交点坐标是
    C.随自变量的增大而减小
    D.图象经过第二、三、四象限
    8、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )

    A. B. C. D.
    9、下列函数中,属于正比例函数的是( )
    A. B. C. D.
    10、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )

    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在弹性限度内,弹簧的长度 y(厘米)是所挂物体质量 x(千克)的一次函数.一根弹簧不挂物体时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米.请写出 y 与x之间的关系式,并求当所挂物体的质量为4千克时弹簧的长度.
    解:设y=kx+b(k≠0)
    由题意得:14.5=b,
    16=3k+b,
    解得:b=___,k=___.
    所以在弹性限度内,___,
    当x=4时,y=0.5×4+14.5=___(厘米).
    即物体的质量为4千克时,弹簧长度为16.5厘米.
    2、函数y=(m﹣2)x|m﹣1|+2是一次函数,那么m的值为___.
    3、观察图象可以发现:
    ①直线y=x,y=3x向右逐渐______,即y的值随x的增大而增大;
    ②直线y=-x,y=-4x向右逐渐______,即y的值随x的增大而减小.

    4、某工厂有甲、乙、丙、丁四个不同的车间生产电子元件,由于生产设备不同,工人在不同车间日生产量也不一定相同,但皆为整数.某日,该工厂接到一批生产订单,工厂老板想将工人合理分配到不同车间,已知甲车间的工人数与乙车间相同,丙车间的工人数是丁车间的倍且比甲车间工人数多,甲车间与丁车间的工人数之和不少于人且不超过人;甲车间与丁车间每个工人的日生产量相同,乙车间每个工人的日生产量为丙车间每个工人日生产量的倍,甲车间与丙车间每个工人的日生产量之和为件,且甲车间每个工人的日生产量不低于丙车间每个工人日生产量的且不超过件;甲车间、丙车间的日生产之和比乙车间、丁车间的日生产之和少件.则当甲、丙两车间当日生产量之和最多时,该工厂调配前往甲车间的人数为__________人.
    5、 “”是一款数学应用软件,用“”绘制的函数和的图像如图所示.若,分别为方程和的一个解,则根据图像可知____.(填“”、“”或“”).

    三、解答题(5小题,每小题10分,共计50分)
    1、已知A,B两地相距的路程为12km,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OCD和线段EF,分别表示甲、乙两人与A地的路程y甲、y乙与他们所行时间x(h)之间的函数关系,且OC与EF相交于点P.

    (1)求y乙与x的函数关系式以及两人相遇地点P与A地的路程;
    (2)求线段OC对应的y甲与x的函数关系式;
    (3)求经过多少h,甲、乙两人相距的路程为6km.
    2、如图,平面直角坐标系xOy中,点A、B的坐标分别为A(a,0),B(0,b),其中a,b满足+b2﹣8b+16=0,点P在y轴上,且在B点上方,PB=m(m>0),以AP为边作等腰直角△APM,∠APM=90°,PM=PA,点M落在第一象限.

    (1)a=   ;b=   ;
    (2)求点M的坐标(用含m代数式表示);
    (3)若射线MB与x轴交于点Q,判断点Q的坐标是否随m的变化而变化,若不变,求出Q点的坐标;若变化,请说明理由.
    3、在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.

    (1)连接AQ,当△ABQ是直角三角形时,则点Q的坐标为 ;
    (2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;
    (3)若将AP绕点A逆时针旋转,使得P落在线段BQ上,记作P',且AP'∥PQ,求此时直线PQ的解析式.
    4、国庆期间,小龚自驾游去了离家156千米的月亮湾,如图是小龚离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.

    (1)求小龚出发36分钟时,离家的距离;
    (2)求出AB段的图象的函数解析式;
    (3)若小龚离目的地还有72千米,求小龚行驶了多少小时.
    5、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水吨,应交水费元.
    (1)若,请写出与的函数关系式.
    (2)若,请写出与的函数关系式.
    (3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?

    -参考答案-
    一、单选题
    1、C
    【解析】

    2、D
    【解析】
    【分析】
    根据一次函数的性质对各选项进行逐一判断即可.
    【详解】
    解:A、当x=−2,y=−2x+1=−2×(−2)+1=5,则点(−2,1)不在函数y=−2x+1图象上,故本选项错误;
    B、由于k=−2<0,则y随x增大而减小,故本选项错误;
    C、由于k=−2<0,则函数y=−2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x的上方,则图象还过第一象限,故本选项错误;
    D、由于直线y=−2x+1与直线y=−2x的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;
    故选:D.
    【点睛】
    本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.
    3、B
    【解析】
    【分析】
    根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.
    【详解】
    解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:
    (5x+5×x)÷5=x(m/min),
    ∵公司位于家正西方500米,
    ∴(−10−2)×x=500+(5+2.5)x,
    解得x=200,
    ∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×=300m/min,
    爸爸到达公司时,丁丁距离商店路程为:
    3500-(−12)×(300+200)=m.
    综上,正确的选项为B.
    故选:B.
    【点睛】
    本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.
    4、B
    【解析】
    【分析】
    利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.
    【详解】
    解:∵y=不符合一次函数的形式,故不是一次函数,
    ∴选项A不符合题意;
    ∵形如y=kx+b(k,b为常数).
    ∴y=﹣3x+1中,y是x的一次函数.
    故选项B符合题意;
    ∵y=2是常数函数,
    ∴选项C不符合题意;
    ∵y=x2+1不符合一次函数的形式,故不是一次函数,
    ∴选项D不符合题意;
    综上,y是x的一次函数的是选项B.
    故选:B.
    【点睛】
    本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.
    5、A
    【解析】
    【分析】
    由m-1<m+1时,y1>y2,可知y随x增大而减小,则比例系数k+2<0,从而求出k的取值范围.
    【详解】
    解:当m-1<m+1时,y1>y2,y随x的增大而减小,
    ∴k+2<0,得k<﹣2.
    故选:A.
    【点睛】
    本题考查一次函数的图象性质:当k<0,y随x增大而减小,难度不大.
    6、B
    【解析】
    【分析】
    根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.
    【详解】
    解:A、根据图表进行分析为一次函数,设函数解析式为:,
    将,,,
    分别代入解析式为:

    解得:,,
    所以函数解析式为:,
    ∴y是x的函数;
    B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;
    C、D选项从图象及解析式看可得y是x的函数.
    故选:B.
    【点睛】
    题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.
    7、D
    【解析】
    【分析】
    根据一次函数的性质对A、C、D进行判断;根据一次函数图象上点的坐标特征对D进行判断,,随的增大而增大,函数从左到右上升;,随的增大而减小,函数从左到右下降.由于与轴交于,当时,在轴的正半轴上,直线与轴交于正半轴;当时,在轴的负半轴,直线与轴交于负半轴.
    【详解】
    解:A、函数的图象与直线平行,故本选项说法正确;
    B、把代入,所以它的图象与轴的交点坐标是,故本选项说法正确;
    C、,所以随自变量的增大而减小,故本选项说法正确;
    D、,,函数图象经过第一、二、四象限,故本选项说法不正确;
    故选:D.
    【点睛】
    本题考查了一次函数的性质,以及k对自变量和因变量间的关系的影响,熟练掌握k的取值对函数的影响是解决本题的关键.
    8、C
    【解析】
    【分析】
    求出点A、点坐标,求出长即可求出点的坐标.
    【详解】
    解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);
    即,,;
    以点为圆心、长为半径画弧,与轴正半轴交于点,
    故,则,
    点C的坐标为;
    故选:C
    【点睛】
    本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.
    9、D
    【解析】
    【分析】
    根据正比例函数的定义逐个判断即可.
    【详解】
    解:A.是二次函数,不是正比例函数,故本选项不符合题意;
    B.是一次函数,但不是正比例函数,故本选项不符合题意;
    C.是反比例函数,不是正比例函数,故本选项不符合题意;
    D.是正比例函数,故本选项符合题意;
    故选:D.
    【点睛】
    本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b(k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数也叫正比例函数.
    10、C
    【解析】
    【分析】
    由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
    【详解】
    解:令直线中,得到,故,
    令直线中,得到,故,
    由勾股定理可知:,
    ∵,且,
    ∴,,
    过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:

    ∵为等边三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    同理,∵为等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    设直线CD的解析式为:y=kx+b,代入和,
    得到:,解得,
    ∴CD的解析式为:,
    与直线联立方程组,
    解得,故E点坐标为,
    故选:C.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
    二、填空题
    1、 14.5 0.5 16.5
    【解析】

    2、0
    【解析】
    【分析】
    根据一次函数的定义,列出关于m的方程和不等式进行求解即可.
    【详解】
    解:由题意得,|m-1|=1且m-2≠0,
    解得:m=2或m=0且m≠2,
    ∴m=0.
    故答案为:0.
    【点睛】
    本题主要考查了一次函数,一次函数y=kx+b的条件是:k、b为常数,k≠0,自变量次数为1.
    3、 上升 下降
    【解析】

    4、21
    【解析】
    【分析】
    根据题意设甲、乙、丙、丁车间的人数分别为人,甲、乙、丙、丁车间的日生产量分别为,则根据甲车间、丙车间的日生产之和比乙车间、丁车间的日生产之和少件,转化为只含有的方程,进而根据因式分解化简得,根据不等式求得的范围,根据是整数,即可求得的值,进而求得,根据题意列出代数式,并根据一次函数的性质求得当时,取得最大值,即可求得的值,即可解决问题.
    【详解】
    根据题意设甲、乙、丙、丁车间的人数分别为人,甲、乙、丙、丁车间的日生产量分别为,则
    ,,












    解得

    是整数,即是整数


    设甲、丙两车间当日生产量之和为:


    ,则当最大时,取得最大值






    时,取得最大值
    此时
    故答案为:21
    【点睛】
    本题考查了方程组的应用,一元一次不等式的应用,一次函数的性质求最值问题,理清题中各关系量是解题的关键.
    5、<
    【解析】
    【分析】
    根据方程的解是函数图象交点的横坐标,结合图象得出结论.
    【详解】
    解:∵方程-x2(x-4)=-1的解为函数图象与直线y=-1的交点的横坐标,
    -x+4=-1的一个解为一次函数y=-x+4与直线y=-1交点的横坐标,
    如图所示:

    由图象可知:a<b.
    故答案为:<.
    【点睛】
    本题考查了函数图象与方程的解之间的关系,关键是利用数形结合,把方程的解转化为函数图象之间的关系.
    三、解答题
    1、 (1),9km
    (2)
    (3)经过小时或1小时,甲、乙两人相距6km.
    【解析】
    【分析】
    (1)根据题意和函数图象中的数据,可以得到y乙与x的函数关系式以及两人相遇地点与A地的距离;
    (2)根据函数图象中的数据,可以计算出线段OP对应的y甲与x的函数关系式;
    (3)根据(1)和(2)中的结果,分两种情况讨论,可以得到经过多少小时,甲、乙两人相距6km.
    (1)
    解:设y乙与x的函数关系式是,
    ∵点E(0,12),F(2,0)在函数y乙=kx+b的图象上,
    ∴ ,解得 ,
    即y乙与x的函数关系式是,
    当x=0.5时,,
    即两人相遇地点P与A地的距离是9km;
    (2)
    解:设线段OC对应的y甲与x的函数关系式是y甲=ax,
    ∵点(0.5,9)在函数y甲=ax的图象上,
    ∴9=0.5a, 解得a=18,
    即线段OP对应的y甲与x的函数关系式是y甲=18x;
    (3)
    解:①令 即

    解得:或
    甲从A地到达B地的时间为:小时,
    经检验:不符合题意,舍去,
    ②当甲到达B地时,乙离B地6千米所走时间为:
    (小时),
    综上所述,经过小时或1小时,甲、乙两人相距6km.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.其中第三问要注意进行分类讨论.
    2、 (1)4;4
    (2)(m+4,m+8)
    (3)不变,(﹣4,0)
    【解析】
    【分析】
    (1)将进行变形,然后根据二次根式有意义的条件及平方的非负性质即可进行求解;
    (2)过点M作轴于点N,利用同角的余角相等可得,根据全等三角形的判定和性质可得,,,结合图象即可得出结果;
    (3)设直线MB的解析式为,由(2)结论将点M的坐标代入整理可得,根据题意可得:,将其代入可确定函数解析式,即可确定点Q的坐标.
    (1)

    则,
    ∵,,
    ∴,,
    解得:,,
    故答案为:4;4;
    (2)
    过点M作轴于点N,

    ∵,
    ∴,
    ∵,
    ∴,
    在和中,

    ∴,
    ∴,,
    ∴,
    ∴点M的坐标为;
    (3)
    点Q的坐标不变,
    理由如下:设直线MB的解析式为,
    则,
    整理得,,
    ∵,
    ∴,
    解得:,
    ∴直线MB的解析式为,
    ∴无论m的值如何变化,点Q的坐标都不变,为.
    【点睛】
    题目主要考查二次根式有意义的条件及平方的非负性质,全等三角形的判定和性质,利用待定系数法确定一次函数解析式等,理解题意,综合运用这些知识点是解题关键.
    3、 (1)(,3)或(4,3)
    (2)45°
    (3)y=-x+
    【解析】
    【分析】
    (1)是直角三角形,分两种情况:①,,轴,进而得出点坐标;②,,如图过点Q作,垂足为C,在中,由勾股定理知,设,在中,由勾股定理知,在中,由勾股定理知,有,求解x的值,即的长,进而得出点坐标;
    (2)如图,点P翻折后落在线段AB上的点E处,由翻折性质和可得,,,,点E是AB的中点,过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H, 可证,求出EF的值,的值,有,用证明,知,,进而可求的值;
    (3)如图,由旋转的性质可知,,证,可知,,过点A作AG⊥BQ于G,设,则,在中,,由勾股定理得,解得的值,进而求出点的坐标,设过点的直线解析式为,将两点坐标代入求解即可求得解析式.
    (1)
    解:∵是直角三角形,点,点
    ∴①当时,
    ∵轴
    ∴点坐标为;
    ②当时,,如图过点Q作,垂足为C

    在中,由勾股定理知
    设,在中,由勾股定理知
    在中,由勾股定理知

    解得


    ∴点坐标为;
    综上所述,点坐标为或.
    (2)
    解:如图,点P翻折后落在线段AB上的点E处,


    又∵




    ∴点E是AB的中点
    过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H,
    在和中
    ∵∠AEM=∠BEF∠EMA=∠EFBAE=BE


    ∴EF=


    在和中




    ∴.
    (3)
    解:如图

    由旋转的性质可知


    在和中
    ∠P'QA=∠PAQAQ=QA∠P'AQ=∠PQA



    过点A作AG⊥BQ于G


    在中,,由勾股定理得
    解得

    ∴点的坐标分别为
    设过点的直线解析式为
    将两点坐标代入得
    解得:
    ∴过点的直线解析式为.
    【点睛】
    本题考查了翻折的性质,三角形全等,勾股定理,一次函数等知识.解题的关键在于将知识灵活综合运用.
    4、 (1)36千米
    (2)y=90x-24 (0.8≤x≤2)
    (3)1.2小时
    【解析】
    【分析】
    (1)由OA段可求得此时小龚驾车的速度,从而可求得36分钟离家的距离;
    (2)用待定系数法.AB段过点A与B,把这两点的坐标代入所设函数解析式中即可求得函数解析式;
    (3)由题意可得小龚离家的距离,根据(2)中求得的函数解析式的函数值,解方程即可求得x的值,从而求得小龚行驶的时间.
    (1)
    在OA段,小龚行驶的速度为:48÷0.8=60(千米/时),36分钟=0.6小时,则小龚出发36分钟时,离家的距离为60×0.6=36(千米);
    (2)
    由图象知: ,
    设AB段的函数解析式为:
    把A、B两点的坐标分别代入上式得:
    解得:
    ∴AB段的函数解析式为(0.8≤x≤2)
    (3)
    由图象知,当小龚离目的地还有72千米时,他已行驶了156−72=84(千米)
    所以在中,当y=84时,即,得
    即小龚离目的地还有72千米,小龚行驶了1.2小时.
    【点睛】
    本题考查了一次函数(正比例函数)的图象与性质,待定系数法求函数解析式,已知函数值求自变量的值等知识,数形结合是本题的关键.
    5、 (1)
    (2)
    (3)13吨
    【解析】
    【分析】
    (1)当0<x≤8时,根据水费=用水量×1.5,即可求出y与x的函数关系式;
    (2)当x>8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y与x的函数关系式;
    (3)当0<x≤8时,y≤12,由此可知这个月该户用水量超过8吨,将y=23代入(2)中所求的关系式,求出x的值即可.
    (1)
    根据题意可知:
    当时,;
    (2)
    根据题意可知:
    当时,;
    (3)
    当时,,
    的最大值为(元,,
    该户当月用水超过8吨.
    令中,则,
    解得:.
    答:这个月该户用了13吨水.
    【点睛】
    本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.

    相关试卷

    冀教版第二十一章 一次函数综合与测试课堂检测:

    这是一份冀教版第二十一章 一次函数综合与测试课堂检测,共30页。试卷主要包含了下列函数中,属于正比例函数的是,巴中某快递公司每天上午7等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共31页。试卷主要包含了若一次函数,若实数,下列不能表示是的函数的是等内容,欢迎下载使用。

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试巩固练习:

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试巩固练习,共30页。试卷主要包含了直线不经过点,已知等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map