![2021-2022学年度冀教版八年级数学下册第二十一章一次函数达标测试试题第1页](http://img-preview.51jiaoxi.com/2/3/12765207/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十一章一次函数达标测试试题第2页](http://img-preview.51jiaoxi.com/2/3/12765207/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十一章一次函数达标测试试题第3页](http://img-preview.51jiaoxi.com/2/3/12765207/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题,共28页。试卷主要包含了点A,已知点,都在直线上,则等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )
A. B.
C. D.
2、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )
A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地
C.甲行驶小时时货车到达地 D.甲行驶到地需要
3、点A(﹣1,y1)和点B(﹣4,y2)都在直线y=﹣2x上,则y1与y2的大小关系为( )
A.y1>y2 B.y1<y2 C.y1=y2 D.y1≥y2
4、点A(3,)和点B(-2,)都在直线y=-2x+3上,则和的大小关系是( )
A. B. C. D.不能确定
5、下列语句是真命题的是( ).A.内错角相等
B.若,则
C.直角三角形中,两锐角和的函数关系是一次函数
D.在中,,那么为直角三角形
6、已知点,都在直线上,则、大小关系是( )
A. B. C. D.不能计较
7、在平面直角坐标系中,已知点,点,在x轴上确定点C,使得的周长最小,则点C的坐标是( )
A. B. C. D.
8、点和点都在直线上,则与的大小关系为( )
A. B. C. D.
9、如图,一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,则下列说法正确的个数是( )
①对于函数y=ax+b来说,y随x的增大而减小;②函数y=ax+d不经过第一象限;③方程ax+b=cx+d的解是x=4;④ d-b=4(a-c).
A.1 B.2 C.3 D.4
10、下列不能表示是的函数的是( )
A.
0
5
10
15
3
3.5
4
4.5
B.
C.
D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图1是甲、乙两个圆柱形容器的轴截面示意图,乙容器中有一个圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙容器底面上),现将甲容器中的水匀速注入乙容器,甲、乙两个容器中水的深度与注水时间(分钟)之间的关系如图2所示,若乙容器中铁块的体积是,则甲容器的底面积是______.
2、甲、乙两车分别从,两地同时相向匀速行驶,当乙车到达地后,继续保持原速向远离的方向行驶,而甲车到达地后立即掉头,并保持原速与乙车同向行驶,经过12小时后两车同时到达距地300千米的地(中途休息时间忽略不计).设两车行驶的时间为(小时),两车之间的距离为(千米),与之间的函数关系如图所示,则当甲车到达地时,乙车距地 __千米.
3、像h=0.5n,T=-2t,l=2πr这些函数解析式都是______与______的积的形式.一般地,形如y=kx(k是常数,k≠0)的函数,叫做______函数,其中k叫做______.
4、在平面直角坐标系中,已知一次函数的图象经过、两点,则________填“”“”或“
5、直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为_____.
三、解答题(5小题,每小题10分,共计50分)
1、已知y与成正比例,且当时,;
(1)求出y与x之间的函数关系式;
(2)当时,求y的值;
(3)当时,求x的取值范围.
2、一次函数y=kx+b,当-3≤x≤1时,对应的y的取值为1≤y≤9,求该函数的解析式.
3、已知y与x﹣2成正比例,且当x=1时,y=﹣2
(1)求变量y与x的函数关系式;
(2)请在给出的平面直角坐标系中画出此函数的图象;
(3)已知点A在函数y=ax+b的图象上,请直接写出关于x的不等式ax+b>2x﹣4的解集 .
4、-辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km;两车相遇后休息了24分钟,再同时继续行驶,设两车之间的距离为y(km),货车行驶时间为x(h),请结合图像信息解答下列问题:
(1)货车的速度为______km/h,轿车的速度为______km/h;
(2)求y与x之间的函数关系式(写出x的取值范围),并把函数图像画完整;
(3)货车出发______h,与轿车相距30km.
5、请用已学过的方法研究一类新函数y=k|x﹣b|(k,b为常数,且k≠0)的图象和性质:
(1)完成表格,并在给出的平面直角坐标系中画出函数y=|x﹣2|的图象;
x
﹣2
﹣1
0
1
2
3
4
5
6
y
4
2
1
0
1
2
4
(2)点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上.
①若y1=y2,则m的值为 ;
②若y1<y2,则m的取值范围是 ;
(3)结合函数图像,写出该函数的一条性质.
-参考答案-
一、单选题
1、C
【解析】
【分析】
由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
【详解】
解:令直线中,得到,故,
令直线中,得到,故,
由勾股定理可知:,
∵,且,
∴,,
过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:
∵为等边三角形,
∴,
∴,
∴,
∴,
∴,
同理,∵为等边三角形,
∴,,
∴,
∴,
∴,
设直线CD的解析式为:y=kx+b,代入和,
得到:,解得,
∴CD的解析式为:,
与直线联立方程组,
解得,故E点坐标为,
故选:C.
【点睛】
本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
2、C
【解析】
【分析】
根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.
【详解】
解:两地的距离为,
故A选项正确,不符合题意;
故D选项正确,不符合题意;
根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,
则
即货车返回途中与甲相遇后又经过甲到地
故B选项正确,
相遇时为第4小时,此时甲行驶了,
货车行驶了
则货车的速度为
则货车到达地所需的时间为
即第小时
故甲行驶小时时货车到达地
故C选项不正确
故选C
【点睛】
本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.
3、B
【解析】
【分析】
由直线y=-2x的解析式判断k=−2
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试巩固练习,共24页。试卷主要包含了如图,已知点K为直线l,下列函数中,属于正比例函数的是等内容,欢迎下载使用。
这是一份数学八年级下册第二十一章 一次函数综合与测试课时作业,共29页。试卷主要包含了下列不能表示是的函数的是,如图,一次函数y=kx+b等内容,欢迎下载使用。
这是一份初中冀教版第二十一章 一次函数综合与测试课后练习题,共28页。试卷主要包含了直线不经过点,若点等内容,欢迎下载使用。