![2021-2022学年度冀教版八年级数学下册第二十一章一次函数达标测试练习题(无超纲)01](http://img-preview.51jiaoxi.com/2/3/12765206/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十一章一次函数达标测试练习题(无超纲)02](http://img-preview.51jiaoxi.com/2/3/12765206/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第二十一章一次函数达标测试练习题(无超纲)03](http://img-preview.51jiaoxi.com/2/3/12765206/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步测试题
展开八年级数学下册第二十一章一次函数达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某商场为了增加销售额,推出“元旦销售大酬宾”活动,其活动内容为:“凡一月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式( )
A.y=54x(x>2) B.y=54x+10(x>2)
C.y=54x-90(x>2) D.y=54x+100(x>2)
2、若点,都在一次函数的图象上,则与的大小关系是( )
A. B. C. D.
3、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )
x(单位:台) | 10 | 20 | 30 |
y(单位:万元/台) | 60 | 55 | 50 |
A.y=80- 2x B.y=40+ 2x
C.y=65- D.y=60-
4、已知、两点,在轴上存在点使得的值最小,则点的坐标为( )
A. B. C. D.
5、无论m为何实数.直线与的交点不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6、下列函数中,属于正比例函数的是( )
A. B. C. D.
7、一次函数的大致图象是( )
A. B.
C. D.
8、下列图形中,表示一次函数y=mx+n与正比例函数y=﹣mnx(m,n为常数,且mn≠0)的图象不正确的是( )
A. B.
C. D.
9、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).
A.-2 B.2
C.4 D.﹣4
10、AB两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离s(km)与时间t(h)的关系如图所示,则甲出发( )小时后与乙相遇.
A.1.5 B.2 C.2.5 D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、直线y=2x-4的图象是由直线y=2x向______平移______个单位得到.
2、正比例函数图像经过点(1,-1),那么k=__________.
3、己知y是关于x的一次函数,下表给出的4组自变量x的值及其对应的函数y的值,其中只有一个y的值计算有误,则它的正确值是_______.
x | 0 | 1 | 2 | 3 |
y | 20 | 17 | 14 | 10 |
4、将直线向上平移个单位后,经过点,若,则___.
5、如果点P1(3,y1),P2(2,y2)在一次函数y=8x-1的图像上,那么y1______y2.(填“>”、“<”或“=”)
三、解答题(5小题,每小题10分,共计50分)
1、为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表:
| 普通板栗(件) | 精品板栗(件) | 总金额(元) |
甲购买情况 | 2 | 3 | 350 |
乙购买情况 | 4 | 1 | 300 |
(1)求普通板栗和精品板栗的单价分别是多少元.
(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a件(),则4000件板栗的销售总利润为w元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?
2、【数学阅读】
如图1,在△ABC中,AB=AC,点P为边BC上的任意一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.
小明的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
【推广延伸】
如图3,当点P在BC延长线上时,其余条件不变,请运用上述解答中所积累的经验和方法,猜想PD,PE与CF的数量关系,并证明.
【解决问题】
如图4,在平面直角坐标系中,点C在x轴正半轴上,点B在y轴正半轴上,且AB=AC.点B到x轴的距离为3.
(1)点B的坐标为_____________;
(2)点P为射线CB上一点,过点P作PE⊥AC于E,点P到AB的距离为d,直接写出PE与d的数量关系_______________________________;
(3)在(2)的条件下,当d=1,A为(-4,0)时,求点P的坐标.
3、如图,在△ABC中,∠ACB=90°,AC=BC,BC与y轴交于D点,点C的坐标为(-2,0),点A的坐标为(-6,3),求点D的坐标.
4、某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如下表:
A种产品 | B种产品 | |
成本价(元/件) | 400 | 300 |
销售价(元/件) | 560 | 450 |
(1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?
(2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?
5、如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.
(1)分别求出这两个函数的解析式;
(2)点在轴上,且是等腰三角形,请直接写出点的坐标.
-参考答案-
一、单选题
1、B
【解析】
【分析】
由题意得,则销售价超过100元,超过的部分为,即可得.
【详解】
解:∵,
∴销售价超过100元,超过的部分为,
∴(且为整数),
故选B.
【点睛】
本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.
2、A
【解析】
【分析】
根据k>0时,y随x的增大而增大,进行判断即可.
【详解】
解:∵点,都在一次函数的图象上,
∴y随x的增大而增大
故选A
【点睛】
本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记
“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.
3、C
【解析】
略
4、B
【解析】
【分析】
解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时的值最小,求出直线BC的函数解析式,令x=0时得y的值即为点P的坐标.
【详解】
解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时的值最小,
设直线BC的函数解析式为y=kx+b,将、C(-1,-1)代入,得
,解得,
∴直线BC的函数解析式为y=x+,
当x=0时,得y=,
∴P(0,).
故选:B.
【点睛】
此题考查了轴对称求最短路径,求一次函数解析式,一次函数图象与坐标轴交点坐标,正确掌握利用轴对称知识解决最短路径问题是解题的关键.
5、C
【解析】
【分析】
根据一次函数的图象与系数的关系即可得出结论.
【详解】
解:∵一次函数y=-x+4中,k=-1<0,b=4>0,
∴函数图象经过一二四象限,
∴无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在第三象限.
故选:C.
【点睛】
本题考查的是两条直线相交或平行问题,熟知一次函数的图象与系数的关系是解答此题的关键.
6、D
【解析】
【分析】
根据正比例函数的定义逐个判断即可.
【详解】
解:A.是二次函数,不是正比例函数,故本选项不符合题意;
B.是一次函数,但不是正比例函数,故本选项不符合题意;
C.是反比例函数,不是正比例函数,故本选项不符合题意;
D.是正比例函数,故本选项符合题意;
故选:D.
【点睛】
本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b(k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数也叫正比例函数.
7、A
【解析】
【分析】
由知直线必过,据此求解可得.
【详解】
解:,
当时,,
则直线必过,
如图满足条件的大致图象是:
故选:A.
【点睛】
本题主要考查一次函数的图象,解题的关键是掌握一次函数的图象性质:①当,时,图象过一、二、三象限;②当,时,图象过一、三、四象限;③当,时,图象过一、二、四象限;④当,时,图象过二、三、四象限.
8、B
【解析】
【分析】
利用一次函数的性质逐项进行判断即可解答.
【详解】
解:A、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
B、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论不一致,故本选项符合题意;
C. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
D. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
故选B.
【点睛】
本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:当,函数的图象经过第一、二、三象限;当,函数的图象经过第一、三、四象限;当,函数的图象经过第一、二、四象限;当,函数的图象经过第二、三、四象限.
9、B
【解析】
【分析】
当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
【详解】
解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
∵|k|越大,它的图象离y轴越近,
∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
故选:B.
【点睛】
本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
10、B
【解析】
【分析】
根据题意结合图象分别求出甲减速后的速度已经乙的速度,再列方程解答即可.
【详解】
解:甲减速后的速度为:(20﹣8)÷(4﹣1)=4(km/h),乙的速度为:20÷5=4(km/h),
设甲出发x小时后与乙相遇,
根据题意得8+4(x﹣1)+4x=20,
解得x=2.
即甲出发2小时后与乙相遇.
故选:B.
【点睛】
本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.
二、填空题
1、 下 4
【解析】
略
2、-2
【解析】
【分析】
由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k+1,即可得出k值.
【详解】
解:∵正比例函数的图象经过点(1,-1),
∴-1=k+1,
∴k=-2.
故答案为:-2.
【点睛】
本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx是解题的关键.
3、11
【解析】
【分析】
经过观察4组自变量和相应的函数值,,符合解析式,不符合,即可判定.
【详解】
解:,,符合解析式,不符合,
这个计算有误的函数值是10,
则它的正确值是11,
故答案为:11.
【点睛】
本题考查了一次函数图象上点的坐标特征,解题的关键是掌握图象上点的坐标符合解析式.
4、3
【解析】
【分析】
根据直线平移的规律得到平移后的函数解析式,将点代入即可.
【详解】
解:将直线向上平移个单位后得到的直线解析式为,
点在平移后的直线上,
,
,
.
故答案为:3.
【点睛】
此题考查了一次函数平移的规律:左加右减,上加下减,熟记规律是解题的关键.
5、
【解析】
【分析】
先求出y1,y2的值,再比较出其大小即可.
【详解】
解:∵点P1(3,y1)、P2(2,y2)在一次函数y=8x-1的图象上,
∴y1=8×3-1=23,y2=8×2-1=15,
∵23>15,
∴y1>y2.
故答案为:>.
【点睛】
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
三、解答题
1、 (1)普通板栗的单价为55元,精品板栗的单价为80元;
(2)普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
【解析】
【分析】
(1)设普通板栗的单价为x元,精品板栗的单价为y元,根据表格列出二元一次方程组,求解即可得;
(2)加工普通板栗a件,则加工精品板栗件,根据题意可得利润的函数关系式,根据一次函数的性质及自变量的取值范围可得当时,所获总利润w最多,代入求解即可得.
(1)
解:设普通板栗的单价为x元,精品板栗的单价为y元,由题意得:
,
解得,
答:普通板栗的单价为55元,精品板栗的单价为80元;
(2)
解:加工普通板栗a件,则加工精品板栗件,
由题意得:,
∵,,
∴当时,所获总利润w最多,
,
∴,
答:普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
【点睛】
题目主要考查二元一次方程组的应用及一次函数的最大利润问题,理解题意,列出方程及函数解析式是解题关键.
2、推广延伸:PD=PE+CF,证明见解析;
解决问题:(1)(0,3);(2)PE=3+d或PE=3-d;(3)或
【解析】
【分析】
推广延伸:连接AP,由△ABP与△ACP面积之差等于△ABC的面积可以证得三线段间的关系;
解决问题:
(1)由点B到x轴的距离及点B在y轴正半轴上即可得到点B的坐标;
(2)分两种情况:当点P在CB延长线上时,由推广延伸的结论即可得PE与d的关系;当点P在线段CB上时,由阅读材料中的结论可得PE与d的关系;
(3)由点A的坐标及AB=AC可求得点C的坐标,从而可求得直线CB的解析式;分两种情况:点P在CB延长线上及当点P在线段CB上,由(2)中结论即可求得点P的纵坐标,从而由点P在直线CB上即可求得点P的横坐标,从而得到点P的坐标.
【详解】
推广延伸:猜想:PD=PE+CF
证明如下:
连接AP,如图3
∵
即
∴AB=AC
∴PD-CF=PE
∴PD=PE+CF
解决问题:
(1)∵点B在y轴正半轴上,点B到x轴的距离为3
∴B(0,3)
故答案为:(0,3)
(2)当点P在CB延长线上时,如图
由推广延伸的结论有:PE=OB+PF=3+d;
当点P在线段CB上时,如图
由阅读材料中的结论可得PE=OB-PF=3-d;
故答案为:PE=3+d或PE=3-d
(3)∵A(-4,0),B(0,3)
∴OA=4,OB=3
由勾股定理得:
∴AC=AB=5
∴OC=AC-OA=5-4=1
∴C(1,0)
设直线CB的解析式为y=kx+b(k≠0)
把C、B的坐标分别代入得:
解得:
即直线CB的解析式为y=-3x+3
由(2)的结论知:PE=3+1=4或PE=3-1=2
∵点P在射线CB上
∴点P的纵坐标为正,即点P的纵坐标为4或2
当y=4时,-3x+3=4,解得:,即点P的坐标为;
当y=2时,-3x+3=2,解得:,即点P的坐标为
综上:点P的坐标为或
【点睛】
本题是材料阅读题,考查了等腰三角形的性质及一次函数的图象与性质,读懂材料的内容并能灵活运用于新的情境中是本题的关键.
3、(0,)
【解析】
【分析】
过A和B分别作AF⊥x轴于F,BE⊥x轴于E,可证得△AFC≌△CEB,从而得到FC=BE,AF=CE,再由点C的坐标为(-2,0),点A的坐标为(-6,3),可得OC=2,AF=CE=3,OF=6,从而得到B点的坐标是(1,4),再求出直线BC的解析式,即可求解.
【详解】
解:过A和B分别作AF⊥x轴于F,BE⊥x轴于E,
∵∠ACB=90°,
∴∠ACF+∠BCE=90°,
∵AF⊥x轴,BE⊥x轴,
∴ ,
∴∠ACF+∠CAF=90°,
∴∠CAF=∠BCE,
在△AFC和△CEB中,
,
∴△AFC≌△CEB(AAS),
∴FC=BE,AF=CE,
∵点C的坐标为(-2,0),点A的坐标为(-6,3),
∴OC=2,AF=CE=3,OF=6,
∴CF=OF-OC=4,OE=CE-OC=2-1=1,
∴BE=4,
∴则B点的坐标是(1,4),
设直线BC的解析式为:y=kx+b,
,解得: ,
∴直线BC的解析式为:y=x+ ,
令 ,则 ,
∴ D(0,).
【点睛】
本题主要考查了求一次函数解析式,全等三角形的判定和性质,根据题意得到△AFC≌△CEB是解题的关键.
4、 (1)A种产品生产400件,B种产品生产200件
(2)A种产品生产1000件时,利润最大为460000元
【解析】
【分析】
(1)设A种产品生产x件,则B种产品生产(600-x)件,根据600件产品用220000元资金,即可列方程求解;
(2)设A种产品生产x件,总利润为w元,得出利润w与A产品数量x的函数关系式,根据增减性可得,A产品生产越多,获利越大,因而x取最大值时,获利最大,据此即可求解.
(1)
解:设A种产品生产x件,则B种产品生产(600-x)件,
由题意得:,
解得:x=400,
600-x=200,
答:A种产品生产400件,B种产品生产200件.
(2)
解:设A种产品生产x件,总利润为w元,由题意得:
由,
得:,
因为10>0,w随x的增大而增大 ,所以当x=1000时,w最大=460000元.
【点睛】
本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
5、 (1)正比例函数的解析式为:,一次函数的解析式为:
(2)或或或
【解析】
【分析】
(1)把点代入可得,再由,可得点 ,即可求解;
(2)分三种情况:当OP=OA=5时,当AP=OA时,当AP=OP时,即可求解.
(1)
解:∵一次函数的图象与轴交于点,与正比例函数的图象相交于点,
∴,解得:
∴正比例函数的解析式为:,
∵,
∴ ,
∵,
∴ ,
∴点 ,
把点, 代入,得:
,解得: ,
∴一次函数的解析式为:;
(2)
解:当OP=OA=5时,点的坐标为或;
当AP=OA时,过点A作 轴于点C,
∴OC=PC=3,
∴OP=6,
∴点;
当AP=OP时,过点P作PD⊥OA于点D,过点D作 轴于点E,
∴点D为AO的中点,即 ,
∵点,
∴点 ,
∴ ,
设点 ,则 ,
∴ ,
∵ ,
∴ ,
即 ,
解得: 或 (舍去)
∴点 ,
综上所述,点P的坐标为或或或.
【点睛】
本题主要考查了一次函数的图象和性质,等腰三角形的性质,熟练掌握一次函数的图象和性质,等腰三角形的性质,利用分类讨论思想和数形结合解答是解题的关键.
冀教版八年级下册第二十一章 一次函数综合与测试达标测试: 这是一份冀教版八年级下册第二十一章 一次函数综合与测试达标测试,共23页。试卷主要包含了点A,已知正比例函数的图像经过点,下列函数中,一次函数是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十一章 一次函数综合与测试单元测试测试题: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试单元测试测试题,共23页。试卷主要包含了已知一次函数y=,一次函数的大致图象是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十一章 一次函数综合与测试单元测试课时作业: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试单元测试课时作业,共32页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。