初中数学冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共32页。试卷主要包含了已知,已知P1等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图1,在中,,点是的中点,动点从点出发沿运动到点,设点的运动路程为,的面积为,与的函数图象如图2所示,则的长为( ).
A.10 B.12 C. D.
2、下列各点在函数y=﹣3x+2图象上的是( )
A.(0,﹣2) B.(1,﹣1) C.(﹣1,﹣1) D.(﹣,1)
3、我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(图1).图2中,分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系,下列说法错误的是( ).
A.快艇的速度比可疑船只的速度快0.3海里/分
B.5分钟时快艇和可疑船只的距离为3.5海里
C.若可疑船只一直匀速行驶,则它从海岸出发0.5小时后,快艇才出发追赶
D.当快艇出发分钟后追上可疑船只,此时离海岸海里
4、已知、两点,在轴上存在点使得的值最小,则点的坐标为( )
A. B. C. D.
5、已知点,在一次函数的图像上,则m与n的大小关系是( )
A. B. C. D.无法确定
6、直线和在同一直角坐标系中的图象可能是( )
A. B.
C. D.
7、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为( )
A.(2,2) B.(,) C.(,) D.(,)
8、已知P1(﹣3,y1)、P2(2,y2)是y=﹣2x+1的图象上的两个点,则y1、y2的大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
9、一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是( )
A. B. C.3h D.
10、下列不能表示是的函数的是( )
A.
0
5
10
15
3
3.5
4
4.5
B.
C.
D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、函数y=-7x的图象在______象限内,从左向右______,y随x的增大而______.
函数y=7x的图象在______象限内,从左向右______,y随x的增大而______.
2、当光线射到x轴进行反射,如果反射的路径经过点A(0,1)和点B(3,4),则入射光线所在直线的解析式为____________.
3、正比例函数图像经过点(1,-1),那么k=__________.
4、在平面直角坐标系中,一次函数和的图象如图所示,则不等式的解集为______
5、如图,直线与的交点的横坐标为2,则不等式的自变量的取值范围是________.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.
(1)则点A的坐标为_______,点B的坐标为______;
(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;
(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.
①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)
②试求线段OQ长的最小值.
2、如图,在平面直角坐标系中,三个顶点的坐标分别为,,,将进行平移,使点移动到点,得到△,其中点、、分别为点、、的对应点
(1)请在所给坐标系中画出△,并直接写出点的坐标;
(2)求的面积;
(3)直线过点且平行于轴,在直线上求一点使与的面积相等,请写出点的坐标.
3、如图,已知直线y=﹣x+3与x轴、y轴分别相交于点A、B,将△AOB沿直线CD折叠,使点A与点B重合.折痕CD与x轴交于点C,与AB交于点D.
(1)点A的坐标为 ,点B的坐标为 ;
(2)求OC的长度,并求出此时直线BC的表达式;
(3)过点B作直线BP与x轴交于点P,且使OP=OA,求△ABP的面积.
4、对于平面直角坐标系xOy中的图形M和点P,给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M的和谐点.已知点A(﹣4,3),B(4,3).
(1)在点P1(﹣2,1),P2(﹣1,0),P3(5,4)中,直线AB的和谐点是 ;
(2)点P为直线y=x+1上一点,若点P为直线AB的和谐点,求点P的横坐标t的取值范围;
(3)已知点C(4,﹣3),D(﹣4,﹣3),如果直线y=x+b上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点都是矩形ABCD的和谐点,且EF>2,请直接写出b的取值范围.
5、已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.
(1)当线段PC与线段AB平行时,求点P的坐标,并求此时△POC的面积与△AOB的面积的比值.
(2)当△AOB被线段PC分成的两部分面积相等时,求线段PC所在直线的解析式;
(3)若△AOB被线段PC分成的两部分面积比为1:5时,求线段PC所在直线的解析式.
-参考答案-
一、单选题
1、D
【解析】
【分析】
由图像可知, 当时,y与x的函关系为:y=x,当x=8时,y=8,即P与A重合时,的面积为8,据此求出CD,BC,再根据勾股定理求出AB即可P.
【详解】
解:如图2,当时,设y=kx,
将(3,3)代入得,k=1,
,
当P与A重合时,即:PC=AC=8,由图像可知,把x=8代入y=x,y=8,
,
,
,
是BC的中点,
在Rt中,
故选:D.
【点睛】
本题考查了动点问题的函数图象,数形结合并熟练掌握三角形的面积计算公式与勾股定理是解题的关键.
2、B
【解析】
【分析】
根据一次函数图象上点的坐标满足函数解析式,逐一判断,即可得到答案.
【详解】
∵,
∴A不符合题意,
∵,
∴B符合题意,
∵,
∴C不符合题意,
∵,
∴D不符合题意,
故选B.
【点睛】
本题主要考查一次函数图象上点的坐标,掌握一次函数图象上点的坐标满足函数解析式,是解题的关键.
3、C
【解析】
【分析】
根据图象分别计算两船的速度判断A正确;利用图象计算出发5分钟时的距离差判断B正确;可疑船只出发5海里后快艇追赶,计算时间判断C错误正确;设快艇出发t分钟后追上可疑船只,列方程,求解即可判断D正确.
【详解】
解:快艇的速度为,可疑船只的速度为(海里/分),
∴快艇的速度比可疑船只的速度快0.5-0.2=0.3海里/分,故A选项不符合题意;
5分钟时快艇和可疑船只的距离为海里,故B选项不符合题意;
由图象可知:可疑船只出发5海里后快艇追赶,分钟=小时,故选项C符合题意;
设快艇出发t分钟后追上可疑船只,,解得t=,
这时离海岸海里,故D选项不符合题意;
故选:C.
【点睛】
此题考查了一次函数的图象,正确理解函数图象并得到相关信息进行计算是解题的关键.
4、B
【解析】
【分析】
解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时的值最小,求出直线BC的函数解析式,令x=0时得y的值即为点P的坐标.
【详解】
解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时的值最小,
设直线BC的函数解析式为y=kx+b,将、C(-1,-1)代入,得
,解得,
∴直线BC的函数解析式为y=x+,
当x=0时,得y=,
∴P(0,).
故选:B.
【点睛】
此题考查了轴对称求最短路径,求一次函数解析式,一次函数图象与坐标轴交点坐标,正确掌握利用轴对称知识解决最短路径问题是解题的关键.
5、A
【解析】
【分析】
根据一次函数的性质,y随x增大而减小判断即可.
【详解】
解:知点,在一次函数的图像上,
∵-2
相关试卷
这是一份初中第二十一章 一次函数综合与测试当堂达标检测题,共32页。试卷主要包含了已知P1等内容,欢迎下载使用。
这是一份2021学年第二十一章 一次函数综合与测试测试题,共24页。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试练习,共26页。试卷主要包含了若一次函数的图像经过第一等内容,欢迎下载使用。