冀教版八年级下册第二十一章 一次函数综合与测试课时作业
展开
这是一份冀教版八年级下册第二十一章 一次函数综合与测试课时作业,共29页。试卷主要包含了已知P1等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线y=kx+b与x轴的交点的坐标是(﹣3,0),那么关于x的不等式kx+b>0的解集是( )A.x>﹣3 B.x<﹣3 C.x>0 D.x<02、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )A.乙比甲提前出发1h B.甲行驶的速度为40km/hC.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km3、下列问题中,两个变量成正比例的是( )A.圆的面积S与它的半径rB.三角形面积一定时,某一边a和该边上的高hC.正方形的周长C与它的边长aD.周长不变的长方形的长a与宽b4、某网店销售一款市场上畅销的护眼台灯,在销售过程中发现,这款护眼台灯销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.则y与x的函数关系式为( )A.y=﹣2x+100 B.y=﹣2x+40 C.y=﹣2x+220 D.y=﹣2x+605、某种摩托车的油箱最多可以储油10升,李师傅记录了他的摩托车加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)的关系,则当0≤x≤500时,y与x的函数关系是( ).x(千米)0100150300450500y(升)1087410 A.正比例函数关系 B.一次函数关系C.二次函数关系 D.反比例函数关系6、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )x(单位:台)102030y(单位:万元/台)605550A.y=80- 2x B.y=40+ 2xC.y=65- D.y=60-7、下列各点中,不在一次函数的图象上的是( )A. B.C. D.8、已知P1(﹣3,y1)、P2(2,y2)是y=﹣2x+1的图象上的两个点,则y1、y2的大小关系是( )A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定9、如图,已知直线与轴交于点,与轴交于点,以点为圆心、长为半径画弧,与轴正半轴交于点,则点的坐标为( )A. B. C. D.10、直线不经过点( )A.(0,0) B.(﹣2,3) C.(3,﹣2) D.(﹣3,2)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、求kx+b>0(或<0)(k≠0)的解集从函数值看:y=kx+b的值大于(或小于)0时,_____的取值范围从函数图象看:直线y=kx+b在_____上方(或下方)的x取值范围2、已知函数y=kx的图像经过二、四象限,且不经过,请写出一个符合条件的函数解析式______.3、用待定系数法确定一次函数表达式所需要的步骤是什么?①设——设函数表达式y=___,②代——将点的坐标代入y=kx+b中,列出关于___、___的方程③求——解方程,求k、b④写——把求出的k、b值代回到表达式中即可.4、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为_________.5、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面角坐标系中,点B在y轴的负半轴上(0,﹣2),过原点的直线OC与直线AB交于C,∠COA=∠OCA=∠OBA=30°(1)点C坐标为 ,OC= ,△BOC的面积为 ,= ;(2)点C关于x轴的对称点C′的坐标为 ;(3)过O点作OE⊥OC交AB于E点,则△OAE的形状为 ,请说明理由;(4)在坐标平面内是否存在点F使△AOF和△AOB全等,若存在,请直接写出F坐标,请说明理由.2、已知 A、B 两地相距 3km,甲骑车匀速从 A 地前往 B 地,如图表示甲骑车过程中离 A 地的路程 y 甲(km)与他行驶所用的时间 x(min)之间的关系.根据图像解答下列问题:(1)甲骑车的速度是 km/min;(2)若在甲出发时,乙在甲前方 1.2km 的 C 处,两人均沿同一路线同时匀速出发前往 B 地,在第 4 分钟甲追上了乙,两人到达 B 地后停止.请在下面同一平面直角坐标系中画出乙离 B 地的距离 y 乙(km)与所用时间 x(min)的关系的大致图像;(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.3、请用已学过的方法研究一类新函数y=k|x﹣b|(k,b为常数,且k≠0)的图象和性质:(1)完成表格,并在给出的平面直角坐标系中画出函数y=|x﹣2|的图象;x﹣2﹣10123456y4 21012 4 (2)点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上.①若y1=y2,则m的值为 ;②若y1<y2,则m的取值范围是 ;(3)结合函数图像,写出该函数的一条性质.4、-辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km;两车相遇后休息了24分钟,再同时继续行驶,设两车之间的距离为y(km),货车行驶时间为x(h),请结合图像信息解答下列问题:(1)货车的速度为______km/h,轿车的速度为______km/h;(2)求y与x之间的函数关系式(写出x的取值范围),并把函数图像画完整;(3)货车出发______h,与轿车相距30km.5、已知一次函数在轴上的截距为2,且随的增大而减小,求一次函数的解析式,并求出它的图像与坐标轴围成的三角形的面积 -参考答案-一、单选题1、A【解析】【分析】根据图象直接解答即可.【详解】∵直线y=kx+b与x轴交点坐标为(﹣3,0),∴由图象可知,当x>﹣3时,y>0,∴不等式kx+b>0的解集是x>﹣3.故选:A.【点睛】此题考查了一次函数图象与不等式的关系,不等式的解集即为一次函数的函数值大于零、等于零或小于零,正确理解二者之间的关系是解题的关键.2、C【解析】【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;C、乙行驶的速度为 ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;D、; ∴0.75h或1.125h时,乙比甲多行驶10km,∴选项D说法正确,不符合题意.故选C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答3、C【解析】【分析】分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.【详解】解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意; 所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意; 所以正方形的周长C与它的边长a成正比例,故C符合题意; 所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;故选C【点睛】本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.4、C【解析】【分析】根据单价为60元时,每星期卖出100个,每涨价1元,每星期少卖出2个,列出关系式即可.【详解】解:∵单价为60元时,每星期卖出100个.销售单价,每涨价1元,少卖出2个,∴设销售单价为x元,则涨价(x-60)元,每星期少卖出2(x-60)个.,∴y=100−2(x-60)=-2x+220,故选C.【点睛】此题主要考查了由实际问题列函数关系式,关键是正确理解题意,找出题目中的等量关系.5、B【解析】【分析】根据表格数据,描点、连线画出函数的图象,根据函数图象进行判断即可【详解】根据表格数据,描点、连线画出函数的图象如图:故y与x的函数关系是一次函数.故选B.【点睛】本题考查了画一次函数图象,掌握一次函数图象的性质是解题的关键.6、C【解析】略7、B【解析】【分析】根据一次函数解析变形可得,进而判断即可.【详解】解:∵∴A. ,,则在一次函数的图象上 ,不符合题意;B. ,,则不在一次函数的图象上,符合题意;C. ,,则在一次函数的图象上 ,不符合题意; D. ,,,则在一次函数的图象上 ,不符合题意;故选B【点睛】本题考查了一次函数的性质,满足一次函数解析式的点都在一次函数图象上,掌握一次函数的性质是解题的关键.8、A【解析】【分析】分别把P1(-3,y1)、P2(2,y2)代入y=-2x+1,求出y1、y2的值,并比较出其大小即可.【详解】解:∵P1(-3,y1)、P2(2,y2)是y=-2x+1的图象上的两个点,∴y1=6+1=7,y2=-4+1=-3,∵7>-3,∴y1>y2.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.9、C【解析】【分析】求出点A、点坐标,求出长即可求出点的坐标.【详解】解:当x=0时,,点B的坐标为(0,-1);当y=0时,,解得,,点A的坐标为(2,0);即,,;以点为圆心、长为半径画弧,与轴正半轴交于点,故,则,点C的坐标为;故选:C【点睛】本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.10、B【解析】【分析】将各点代入函数解析式即可得.【详解】解:A、当时,,即经过点,此项不符题意;B、当时,,即不经过点,此项符合题意;C、当时,,即经过点,此项不符题意;D、当时,,即经过点,此项不符题意;故选:B.【点睛】本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.二、填空题1、 x x轴【解析】略2、(不唯一)【解析】【分析】将(-2,2)代入y=kx中,求得k=-1,只要符合条件的函数解析式中的k≠-1即可.【详解】解:将(-2,2)代入y=kx中,得:2=-2k,解得:k=-1,∴符合符合条件的函数解析式可以为y=-2x,答案不唯一,故答案为:y=-2x(不唯一).【点睛】本题考查正比例函数的图象与性质,熟练掌握正比例函数的图象上点的坐标特征是解答的关键.3、 kx+b k b【解析】略4、3或1【解析】【分析】分两种情况:①当点F在DC之间时,作出辅助线,求出点F的坐标即可求出k的值;②当点F与点C重合时求出点F的坐标即可求出k的值.【详解】解:①如图,作AG⊥EF交EF于点G,连接AE,∵AF平分∠DFE,∴DF=AG=2 在RT△ADF和RT△AGF中,∴RT△ADF≌RT△AGF ∴DF=FG ∵点E是BC边的中点,∴BE=CE=1 ∴AE= ∴ ∴ 在RT△FCE中,EF2=FC2+CE2,即(DF+1)2=(2-DF)2+1,解得,∴点,把点F的坐标代入y=kx得:2=,解得k=3;②当点F与点C重合时,∵四边形ABCD是正方形,∴AF平分∠DFE,∴F(2,2),把点F的坐标代入y=kx得:2=2k,解得k=1.故答案为:1或3.【点睛】本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质理,及勾股定解题的关键是分两种情况求出k.5、【解析】【分析】根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.【详解】∵直线与相交于点∴的坐标既满足,也满足∴是方程组的解 故答案为:【点睛】本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.三、解答题1、 (1)(3,),2,3,(2)(3,)(3)等边三角形,见解析(4)存在,(0,)或(0,﹣)或(2,)或(2,﹣).【解析】【分析】(1)先根据等角对等边,确定OB=OC=,再通过构造垂线法,分别求出相关线段的长,根据点所在象限,确定点的坐标;根据面积公式,选择适当的底边计算即可;利用同底的两个三角形面积之比等于对应高之比计算即可;(2)根据点关于x轴对称的特点,直接写出坐标即可;(3)根据三个角是60°的三角形是等边三角形判定即可;(4)利用全等三角形的判定定理,综合运用分类思想求解.(1)解:(1)∵点B(0,﹣2),∴OB=,∵∠COA=∠OCA=∠OBA=30°,∴OB=OC=,过点C作CD⊥x轴于点D, ∴CD==,DO==3,∵点C在第一象限;∴C(3,),∴=;∴,故答案为:(3,),2,3,.(2)∵C(3,),点C与点C'关于x轴对称,∴C'(3,﹣).故答案为:(3,﹣).(3)∵OE⊥OC,∴∠COE=90°,∵∠COA=30°,∴∠AOE=60°,∵∠OAE=60°,∴∠AOE=∠OAB=60°,∴△OAE是等边三角形,故答案为:等边三角形.(4)解:①如图1,当△AOB≌△AOF时,∵OB=,∴OF=,∴(0,),(0,﹣),②如图2,当△AOB≌OAF时,设直线AB的解析式为y=kx+b,∴,解得,∴直线AB的解析式为y=x,令y=0,得x=2,∴点A的坐标为(2,0),∵△AOB≌OAF,∴OB=AF=,∴F3(2,),F4(2,﹣),综上所述,存在点F,且点F的坐标是(0,)或(0,﹣)或(2,)或(2,﹣).【点睛】本题考查了等角对等边,坐标与象限,勾股定理,点的对称,函数解析式,等边三角形的判定,三角形全等的判定,分类思想,熟练掌握待定系数法,灵活运用三角形全等的判定是解题的关键.2、 (1)0.5(2)见解析(3)(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km【解析】【分析】(1)由甲骑车6min行驶了3km,可得甲骑车的速度是0.5km/min;(2)设乙的速度为x km/min,求出乙的速度,可得乙出发后9min到达B地,即可作出图象;(3)由y甲=0.5x,y乙=1.8-0.2x,可得两个函数图象的交点坐标为(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.(1)解:甲骑车6min行驶了3km,∴甲骑车的速度是3÷6=0.5(km/min),故答案为:0.5;(2)解:设乙的速度为x km/min,由题意得0.5×4-4x=1.2,∴x=0.2,又A、B两地相距3km,A、C两地相距1.2km,∴B、C两地相距1.8km,∴乙出发后1.8÷0.2=9(min)到达B地,在同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图象如下:(3)解:由(1)(2)可知,y甲=0.5x,y乙=1.8-0.2x,由0.5x=1.8-0.2x得x=,当x=时,y甲=y乙=,∴两个函数图象的交点坐标为(,),它的意义是当出发min后,乙离B的距离和甲离A地的距离都是km.【点睛】本题考查一次函数的应用,一元一次方程的应用,解题的关键是读懂题意,求出甲、乙速度从而列出函数关系式.3、 (1)3,3,画函数图象见解析;(2)①;②m>1;(3)见解析【解析】【分析】(1)列表、描点,连线画出函数图象即可;(2)观察图形,根据图象的性质即可得到结论;(3)结合(2)中图象的性质,即可得到结论.(1)解:列表:x﹣2﹣10123456y432101234 描点、连线,画出函数y=|x﹣2|图象如图:(2)解:点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上,观察图象:y=|x﹣2|图象关于直线x=2对称,且当x>2时,y随x增大而增大,当x<2时,y随x增大而减小,而m+2>m,①若y1=y2,则m+2-2=2-m,解得m=1;②若y1<y2,则m>1,故答案为:1,m>1;(3)解:对于函数y=k|x−b|,当k>0时,函数值y先随x的增大而减小,函数值为0后,再随x的增大而增大.【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质,数形结合解题是关键.4、 (1)80,100(2)当时,;当时,;当时,;当时,,图见解析(3)或【解析】【分析】(1)结合图象可得经过两个小时,两车相遇,设货车的速度为,则轿车的速度为,根据题意列出方程求解即可得;(2)分别求出各个时间段的函数解析式,然后再函数图象中作出相应直线即可;(3)将代入(2)中各个时间段的函数解析式,求解,同时考虑解是否在相应时间段内即可.(1)解:由图象可得:经过两个小时,两车相遇,设货车的速度为,则轿车的速度为,∴,解得:,,∴货车的速度为,则轿车的速度为,故答案为:80;100;(2)当时,图象经过,点,设直线解析式为:,代入得:,解得:,∴当时,;分钟小时,∵两车相遇后休息了24分钟,∴当时,;当时,轿车距离甲地的路程为:,货车距离乙地的路程为:,轿车到达甲地还需要:,货车到达乙地还需要:,∴当时,;当时,;当时,;当时,;当时,;∴函数图象分别经过点,,,作图如下:(3)①当时,令可得:,解得:;②当时,令可得:,解得:;③当时,令可得:;解得::,不符合题意,舍去;综上可得:货车出发或,与轿车相距30km,故答案为:或.【点睛】题目主要考查一元一次方程的应用,一次函数的应用,利用待定系数法确定一次函数解析式,作函数图象等,理解题意,熟练掌握运用一次函数的基本性质是解题关键.5、y=-2x+2;1【解析】【分析】根据截距为2,且y随x的增大而减小即可确定k值,求出解析式即可求出面积.【详解】解:∵一次函数y=kx+k2-2在y轴上的截距为2,∴|k2-2|=2,即k=±2或k'=0,又∵y随x的增大而减小,∴k<0,即k=-2,∴一次函数解析式为y=-2x+2;作出函数图象如图,设坐标轴原点为O,函数图象与x轴交于点B,与y轴交于点A,由解析式可知A(0,2),B(1,0),∴OA=2,OB=1,∴S△AOB=OA•OB=×2×1=1.【点睛】本题主要考查一次函数的知识,熟练掌握一次函数基本知识是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试练习,共23页。试卷主要包含了巴中某快递公司每天上午7等内容,欢迎下载使用。
这是一份2020-2021学年第二十一章 一次函数综合与测试同步测试题,共23页。试卷主要包含了一次函数的图象不经过的象限是,一次函数的图象一定经过等内容,欢迎下载使用。
这是一份数学八年级下册第二十一章 一次函数综合与测试精练,共31页。