初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题,共22页。试卷主要包含了点A等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( ) A.小豪爸爸出发后12min追上小豪 B.小李爸爸的速度为300m/minC.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m2、无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在( )A.第一象限 B.第二象限C.第三象限 D.第四象限3、下列函数中,y是x的一次函数的是( )A.y= B.y=﹣3x+1 C.y=2 D.y=x2+14、已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为( )A. B.C. D.5、某种摩托车的油箱最多可以储油10升,李师傅记录了他的摩托车加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)的关系,则当0≤x≤500时,y与x的函数关系是( ).x(千米)0100150300450500y(升)1087410 A.正比例函数关系 B.一次函数关系C.二次函数关系 D.反比例函数关系6、已知点和点是一次函数图象上的两点,若,则下列关于的值说法正确的是( )A.一定为正数 B.一定为负数 C.一定为0 D.以上都有可能7、如图,直线y=kx+b与x轴的交点的坐标是(﹣3,0),那么关于x的不等式kx+b>0的解集是( )A.x>﹣3 B.x<﹣3 C.x>0 D.x<08、如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )A. B.C. D.9、点A(﹣1,y1)和点B(﹣4,y2)都在直线y=﹣2x上,则y1与y2的大小关系为( )A.y1>y2 B.y1<y2 C.y1=y2 D.y1≥y210、已知点,在一次函数的图像上,则m与n的大小关系是( )A. B. C. D.无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一次函数的图象过点(3,5)与(-4,-9),求一次函数的解析式.分析:求一次函数y=kx+b的解析式,关键是求出k,b的值.从已知条件可以列出关于k,b的二元一次方程组,并求出k,b.解:设这个一次函数的解析为:y=kx+b因为y=kx+b的图象过点(3,5)与(-4,-9),所以,解方程组得:,这个一次函数的解析式为:___2、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.3、先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做___.4、若正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,请写出一个满足上述要求的k的值______.5、如图,直线y=-x+2与y=kx+b(k≠0且k,b为常数)的交点坐标为(3,-1),则关于x的不等式kx+b≥-x+2的解集为 ___.三、解答题(5小题,每小题10分,共计50分)1、已知y与成正比例,且当时,;(1)求出y与x之间的函数关系式;(2)当时,求y的值;(3)当时,求x的取值范围.2、对于平面直角坐标系xOy中的图形M和点P,给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M的和谐点.已知点A(﹣4,3),B(4,3).(1)在点P1(﹣2,1),P2(﹣1,0),P3(5,4)中,直线AB的和谐点是 ;(2)点P为直线y=x+1上一点,若点P为直线AB的和谐点,求点P的横坐标t的取值范围;(3)已知点C(4,﹣3),D(﹣4,﹣3),如果直线y=x+b上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点都是矩形ABCD的和谐点,且EF>2,请直接写出b的取值范围.3、如图,在△ABC中,∠ACB=90°,AC=BC,BC与y轴交于D点,点C的坐标为(-2,0),点A的坐标为(-6,3),求点D的坐标.4、一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t(小时),航行的路程为s(千米),s与t的函数图像如图所示.(1)甲乙两地相距 千米;(2)轮船顺水航行时航行的路程s关于所用时间t的函数关系式为 ,定义域是 ;(3)如果轮船从乙地逆水航行返回到甲地时的速度为20千米/小时,那么点M的坐标是 .5、为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划? -参考答案-一、单选题1、B【解析】【分析】根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.【详解】解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:(5x+5×x)÷5=x(m/min),∵公司位于家正西方500米,∴(−10−2)×x=500+(5+2.5)x,解得x=200,∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×=300m/min,爸爸到达公司时,丁丁距离商店路程为:3500-(−12)×(300+200)=m.综上,正确的选项为B.故选:B.【点睛】本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.2、C【解析】【分析】通过一次函数中k和b的符号决定了直线经过的象限来解决问题.【详解】解:因为y=-x+4中,k=-1<0,b=4>0,∴直线y=-x+4经过第一、二、四象限,所以无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在第三象限.故选:C.【点睛】本题考查了一次函数中k和b的符号,k>0,直线经过第一、三象限;k<0,直线经过第二、四象限.3、B【解析】【分析】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.【详解】解:∵y=不符合一次函数的形式,故不是一次函数,∴选项A不符合题意;∵形如y=kx+b(k,b为常数).∴y=﹣3x+1中,y是x的一次函数.故选项B符合题意;∵y=2是常数函数,∴选项C不符合题意;∵y=x2+1不符合一次函数的形式,故不是一次函数,∴选项D不符合题意;综上,y是x的一次函数的是选项B.故选:B.【点睛】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.4、D【解析】【分析】根据一次函数的图象与系数的关系,由一次函数图象分析可得m、n的符号,进而可得mn的符号,从而判断的图象是否正确,进而比较可得答案.【详解】A、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;B、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;C、由一次函数图象可知,,即;正比例函数的图象可知,矛盾,故此选项错误;D、由一次函数图象可知,,即,与正比例函数的图象可知,故此选项正确;故选:D.【点睛】此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.5、B【解析】【分析】根据表格数据,描点、连线画出函数的图象,根据函数图象进行判断即可【详解】根据表格数据,描点、连线画出函数的图象如图:故y与x的函数关系是一次函数.故选B.【点睛】本题考查了画一次函数图象,掌握一次函数图象的性质是解题的关键.6、A【解析】【分析】由 可得一次函数的性质为随的增大而增大,从而可得答案.【详解】解:点和点是一次函数图象上的两点,, 随的增大而增大, 即一定为正数,故选A【点睛】本题考查的是一次函数的增减性的应用,掌握“一次函数,随的增大而增大, 则”是解本题的关键.7、A【解析】【分析】根据图象直接解答即可.【详解】∵直线y=kx+b与x轴交点坐标为(﹣3,0),∴由图象可知,当x>﹣3时,y>0,∴不等式kx+b>0的解集是x>﹣3.故选:A.【点睛】此题考查了一次函数图象与不等式的关系,不等式的解集即为一次函数的函数值大于零、等于零或小于零,正确理解二者之间的关系是解题的关键.8、A【解析】【分析】分三段来考虑点P沿A→D运动,的面积逐渐变大;点P沿D→C移动,的面积不变;点P沿C→B的路径移动,的面积逐渐减小,同时考虑各段的函数解析式,据此选择即可得.【详解】解:如图,过点B作BH⊥DA交DA的延长线于H,设BH=h,则当点P在线段AD上时,,h是定值,y是x的一次函数,点P沿A→D运动,的面积逐渐变大,且y是x的一次函数,点P沿D→C移动,的面积不变,点P沿C→B的路径移动,的面积逐渐减小,同法可知y是x的一次函数,故选:A.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律,理解题意,作出辅助线是解题关键.9、B【解析】【分析】由直线y=-2x的解析式判断k=−2<0,y随x的增大而减小,再结合点的坐标特征解题即可.【详解】解:∵一次函数中一次项系数k=-2<0,∴y随x的增大而减小,∵-4<-1,∴y1<y2.故选B.【点睛】本题考查一次函数的增减性,是重要考点,难度较易,掌握相关知识是解题关键.10、A【解析】【分析】根据一次函数的性质,y随x增大而减小判断即可.【详解】解:知点,在一次函数的图像上,∵-2<0,∴y随x增大而减小,∵,∴,故选:A.【点睛】本题考查了一次函数的增减性,解题关键是明确一次函数y随x增大而减小的性质.二、填空题1、y=2x-1【解析】略2、【解析】【分析】根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.【详解】∵直线与相交于点∴的坐标既满足,也满足∴是方程组的解 故答案为:【点睛】本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.3、待定系数法【解析】略4、2(满足k>0即可)【解析】【分析】根据函数图象经过第一、三象限,可判断k>0,任取一个正值即可.【详解】解:∵正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,∴k>0.故答案为:2(满足k>0即可).【点睛】本题考查了正比例函数的性质,解题关键是明确正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限时,k>0.5、【解析】【分析】根据题意结合函数图象,可得当时,的图象对应的点在函数(且k,b为常数)的图象下面,据此即可得出不等式的解集.【详解】解:从图象得到,当时,的图象对应的点在函数(且k,b为常数)的图象下面,∴不等式的解集为,故答案为:.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用,解决此类问题的关键是仔细观察图形,注意几个关键点,做到数形结合.三、解答题1、 (1)(2)(3)【解析】【分析】(1)根据正比例的定义,设y=k(x+2),然后把已知一组对应值代入求出k即可;(2)利用(1)中的函数关系式求自变量为−3对应的函数值即可;(3)通过解不等式2x+4<−2即可.(1)解:设y=k(x+2)(k≠0),当x=1,y=6得k(1+2)=6,解得k=2,所以y与x之间的函数关系式为y=2x+4;(2)x=−3 时,y=2×(−3)+4=−2;(3)y<−2 时,2x+4<−2,解得.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.2、 (1)P1,P3(2)0≤t≤4(3)3≤b<5或﹣5<b≤﹣3【解析】【分析】(1)作出直线AB图象,根据到直线的距离即可得出结论;(2)设出点P的坐标,根据和谐点的定义找出临界值即可求出t的取值范围;(3)根据图象找出临界值,再根据对称性写全取值范围即可.(1)解:作AB图象如图,P2到AB的距离为3不符合和谐点条件,P1、P3点到直线AB的距离在0~2之间,符合和谐点的条件,故直线AB的和谐点为P1,P3;故答案为:P1,P3;(2)解:∵点P为直线y=x+1上一点,∴设P点坐标为(t,t+1),寻找直线上的点,使该点到AB垂线段的距离为2,∴|t+1-3|=2,解得t=0或t'=4,∴0≤t≤4;(3)解:如图当b=5时,图中线段EF上的点都是矩形ABCD的和谐点,且EF=2,当b=3时,线段E'F'上的点都是矩形ABCD的和谐点,E'F'>2,∴3≤b<5,由对称性同法可知﹣5<b≤﹣3也满足条件,故3≤b<5或﹣5<b≤﹣3..【点睛】本题主要考查一次函数的知识,弄清新定义是解题的关键.3、(0,)【解析】【分析】过A和B分别作AF⊥x轴于F,BE⊥x轴于E,可证得△AFC≌△CEB,从而得到FC=BE,AF=CE,再由点C的坐标为(-2,0),点A的坐标为(-6,3),可得OC=2,AF=CE=3,OF=6,从而得到B点的坐标是(1,4),再求出直线BC的解析式,即可求解.【详解】解:过A和B分别作AF⊥x轴于F,BE⊥x轴于E,∵∠ACB=90°,∴∠ACF+∠BCE=90°,∵AF⊥x轴,BE⊥x轴,∴ ,∴∠ACF+∠CAF=90°,∴∠CAF=∠BCE,在△AFC和△CEB中, ,∴△AFC≌△CEB(AAS),∴FC=BE,AF=CE, ∵点C的坐标为(-2,0),点A的坐标为(-6,3),∴OC=2,AF=CE=3,OF=6,∴CF=OF-OC=4,OE=CE-OC=2-1=1,∴BE=4,∴则B点的坐标是(1,4),设直线BC的解析式为:y=kx+b, ,解得: ,∴直线BC的解析式为:y=x+ ,令 ,则 ,∴ D(0,).【点睛】本题主要考查了求一次函数解析式,全等三角形的判定和性质,根据题意得到△AFC≌△CEB是解题的关键.4、 (1)60(2),(3)【解析】【分析】(1)根据函数图象可知,从甲地到乙地,轮船行驶了2小时,行驶路程为60千米,由此即可得;(2)先判断出轮船顺水航行段对应的是图象中部分,再设此时关于的函数关系式为,利用待定系数法即可得;(3)根据图象可得返回时,行驶到点处所用时间,从而可得从乙地行驶到点的路程,由此即可得.(1)解:由函数图象可知,从甲地到乙地,轮船行驶了2小时,行驶路程为60千米,故答案为:60;(2)解:由题意得:轮船顺水航行段对应的是图象中部分,设此时关于的函数关系式为,将点代入得:,解得,则关于的函数关系式为,定义域为,故答案为:,;(3)解:由图象可知,返回时,行驶到点处所用时间为(小时),则从乙地到点的路程为(千米),所以点的纵坐标为,所以点的坐标为,故答案为:.【点睛】本题考查了利用待定系数法求正比例函数的解析式、从函数图象获取信息,读懂函数图象是解题关键.5、 (1)今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元(2)1800万【解析】【分析】(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,根据题意列出二元一次方程组,解方程组求解即可;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,列出一元一次不等式组求得的范围,进而设明年需投入W万元,根据题意列出关于的关系式,根据一次函数的性质求得最小值即可求解.(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意得:,解得:答:今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,由题意可得:1.8(1100-m)≥1.2(1+25%)m,解得:m≤600, 设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100-m)=-0.3m+1980, ∵-0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值-0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出二元一次方程组、不等式以及一次函数关系式是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题,共29页。试卷主要包含了一次函数的大致图象是等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试一课一练,共24页。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步训练题,共29页。试卷主要包含了若直线y=kx+b经过一,点A等内容,欢迎下载使用。