初中数学冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题
展开八年级数学下册第二十一章一次函数章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,一次函数y=kx+b(k>0)的图像过点,则不等式的解集是( )
A.x>-3 B.x>-2 C.x>1 D.x>2
2、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值( )
A.小于0 B.等于0 C.大于0 D.非负数
3、某种摩托车的油箱最多可以储油10升,李师傅记录了他的摩托车加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)的关系,则当0≤x≤500时,y与x的函数关系是( ).
x(千米)
0
100
150
300
450
500
y(升)
10
8
7
4
1
0
A.正比例函数关系 B.一次函数关系
C.二次函数关系 D.反比例函数关系
4、已知一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,则这个一次函数的表达式可能是( )
A.y=﹣2x+1 B.y=2x+1 C.y=﹣2x﹣1 D.y=2x﹣1
5、如图,在平面直角坐标系中,,,,点D在线段BA上,点E在线段BA的延长线上,并且满足,M为线段AC上一点,当点D、M、E构成以M为直角顶点的等腰直角三角形时,M点坐标为( )
A. B. C. D.
6、无论m为何实数.直线与的交点不可能在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7、已知点和点是一次函数图象上的两点,若,则下列关于的值说法正确的是( )
A.一定为正数 B.一定为负数 C.一定为0 D.以上都有可能
8、已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为( )
A. B.
C. D.
9、下列图形中,表示一次函数y=mx+n与正比例函数y=﹣mnx(m,n为常数,且mn≠0)的图象不正确的是( )
A. B.
C. D.
10、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.
则下列结论:
①A,B两城相距300千米;
②乙车比甲车晚出发1小时,却早到1小时;
③乙车出发后2.5小时追上甲车;
④当甲、乙两车相距50千米时,或.
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、有下列函数:①y=2x+1;②y=-3x+4;③ y=0.5x;④y=x-6
(1)其中过原点的直线是________;
(2)函数y随x的增大而增大的是_______;
(3)函数y随x的增大而减小的________;
(4)图象在第一、二、三象限的________ .
2、函数y=-7x的图象在______象限内,从左向右______,y随x的增大而______.
函数y=7x的图象在______象限内,从左向右______,y随x的增大而______.
3、将直线向上平移个单位后,经过点,若,则___.
4、一般地,任何一个二元一次方程都可以转化为一次函数y=kx+b(k、b为常数,且k≠0)的形式,所以每个二元一次方程都对应一个_____,也对应一条直线.这条直线上每个点的坐标(x,y)都是这个二元一次方程的解.
由含有未知数x和y的两个二元次一方程组成的每个二元一次方程组,都对应两个一次函数,于是也对应两条直线.从数的角度看,解这样的方程组,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从形的角度看,解这样的方程组,相当于确定两条相应直线_____的坐标.因此,我们可以用画一次函数图象的方法得到方程组的解.
5、如图,已知函数和的图象交于点,则根据图象可得,二元一次方程组的解是_______.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,在平面直角坐标系中,直线分别与轴、轴交于、两点,直线分别与轴、轴交于、两点,点是上一点.
(1)求、的值;
(2)试判断线段与线段之间的关系,并说明理由;
(3)如图2,若点是轴上一点,点是直线上一动点,点是直线上一动点,当是以点为直角顶点的等腰三角形时,请直接写出相应的点、的坐标.
2、在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.
(1)连接AQ,当△ABQ是直角三角形时,则点Q的坐标为 ;
(2)当P、Q运动到某个位置时,如果沿着直线AQ翻折,点P恰好落在线段AB上,求这时∠AQP的度数;
(3)若将AP绕点A逆时针旋转,使得P落在线段BQ上,记作P',且AP'∥PQ,求此时直线PQ的解析式.
3、A、B两地相距20千米,甲、乙两人某日中午12点同时从A地出发匀速前往B地,甲的速度是每小时4千米,如图,线段OM反映了乙所行的路程s与所用时间t之间的函数关系,根据提供的信息回答下列问题:
(1)乙由A地前往B地所行的路程s与所用时间t之间的函数解析式是 ,定义域是 ;
(2)在图中画出反映甲所行驶的路程s与所用时间t之间的函数图象;
(3)下午3点时,甲乙两人相距 千米.
4、已知一次函数,完成下列问题:
(1)求此函数图像与x轴、y轴的交点坐标;
(2)画出此函数的图像:观察图像,当时,x的取值范围是______.
5、请用已学过的方法研究一类新函数y=k|x﹣b|(k,b为常数,且k≠0)的图象和性质:
(1)完成表格,并在给出的平面直角坐标系中画出函数y=|x﹣2|的图象;
x
﹣2
﹣1
0
1
2
3
4
5
6
y
4
2
1
0
1
2
4
(2)点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上.
①若y1=y2,则m的值为 ;
②若y1<y2,则m的取值范围是 ;
(3)结合函数图像,写出该函数的一条性质.
-参考答案-
一、单选题
1、C
【解析】
【分析】
先将(-1,0)代入y=kx+b中得到k=b,则不等式化为,根据k>0解关于x的不等式即可.
【详解】
解:将(-1,0)代入y=kx+b中得:-k+b=0,解得:k=b,
则不等式化为,
∵k>0,
∴(x-2)+1>0,
解得:x>1,
故选:C.
【点睛】
本题考查了一次函数与一元一次不等式的关系,根据一次函数图象上的点的坐标特征求得k与b的关系是解答的关键.
2、C
【解析】
【分析】
一次函数过第一、二、三象限,则,根据图象结合性质可得答案.
【详解】
解:如图,函数的图象经过第一、二、三象限,
则函数的图象与轴交于正半轴,
故选C
【点睛】
本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.
3、B
【解析】
【分析】
根据表格数据,描点、连线画出函数的图象,根据函数图象进行判断即可
【详解】
根据表格数据,描点、连线画出函数的图象如图:
故y与x的函数关系是一次函数.
故选B.
【点睛】
本题考查了画一次函数图象,掌握一次函数图象的性质是解题的关键.
4、D
【解析】
【分析】
根据题意和一次函数的性质,可以解答本题.
【详解】
解:∵一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,
∴b=-1,k>0,
故选:D.
【点睛】
本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
5、A
【解析】
【分析】
过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,求出直线AB、AC的解析式,设出点D、E、M的坐标,根据△DGM≌△MFE,建立方程求解即可.
【详解】
解:过点M作y轴的平行线,过点E、D分别作这条直线的垂线,垂足分别为F、G,
设直线AB的解析式为,把,代入得,
,解得,,
∴AB的解析式为,
同理可求直线AC的解析式为,
设点D坐标为,点M坐标为,
∵,
∴
∵,,
∴点E是由点D向右平移3个单位,向上平移9个单位得到的,则点E坐标为,
∵∠EFM=∠DGM=∠DME
∴∠FEM+∠FME=∠DMG+∠FME =90°,
∴∠FEM =∠DMG,
∵DM=EM,
∴△DGM≌△MFE,
∴DG=FM,GM=EF,
根据坐标可列方程组,b-a=3a+18+1.5b-9-1.5b+9-3a-9=b-a-3,
解得,,
所以,点M坐标为,
故选:A.
【点睛】
本题考查了求一次函数解析式和全等三角形的判定与性质,解题关键是求出直线解析式,设出点的坐标,利用全等三角形建立方程.
6、C
【解析】
【分析】
根据一次函数的图象与系数的关系即可得出结论.
【详解】
解:∵一次函数y=-x+4中,k=-1<0,b=4>0,
∴函数图象经过一二四象限,
∴无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在第三象限.
故选:C.
【点睛】
本题考查的是两条直线相交或平行问题,熟知一次函数的图象与系数的关系是解答此题的关键.
7、A
【解析】
【分析】
由 可得一次函数的性质为随的增大而增大,从而可得答案.
【详解】
解:点和点是一次函数图象上的两点,,
随的增大而增大,
即一定为正数,
故选A
【点睛】
本题考查的是一次函数的增减性的应用,掌握“一次函数,随的增大而增大, 则”是解本题的关键.
8、D
【解析】
【分析】
根据一次函数的图象与系数的关系,由一次函数图象分析可得m、n的符号,进而可得mn的符号,从而判断的图象是否正确,进而比较可得答案.
【详解】
A、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;
B、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;
C、由一次函数图象可知,,即;正比例函数的图象可知,矛盾,故此选项错误;
D、由一次函数图象可知,,即,与正比例函数的图象可知,故此选项正确;
故选:D.
【点睛】
此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
9、B
【解析】
【分析】
利用一次函数的性质逐项进行判断即可解答.
【详解】
解:A、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
B、由一次函数的图象可知,,故;由正比例函数的图象可知,两结论不一致,故本选项符合题意;
C. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
D. 由一次函数的图象可知,,故;由正比例函数的图象可知,两结论一致,故本选项不符合题意;
故选B.
【点睛】
本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:当,函数的图象经过第一、二、三象限;当,函数的图象经过第一、三、四象限;当,函数的图象经过第一、二、四象限;当,函数的图象经过第二、三、四象限.
10、B
【解析】
【分析】
当不动时,距离300千米,就是A,B两地的距离;甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,确定甲,乙的函数解析式,求交点坐标;分甲出发,乙未动,距离为50千米,甲出发,乙出发,且甲在前50距离50千米,甲在后距离50千米,乙到大时距离为50千米四种情形计算即可.
【详解】
∵(0,300)表示不动时,距离300千米,就是A,B两地的距离,
∴①正确;
∵甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,
∴乙车比甲车晚出发1小时,却早到1小时;
∴②正确;
设,
∴300=5m,
解得m=60,
∴;
设,
∴
解得,
∴;
∴
解得t=2.5,
∴2.5-1=1.5,
∴乙车出发后1.5小时追上甲车;
∴③错误;
当乙未出发时,,
解得t=;
当乙出发,且在甲后面时,,
解得t=;
当乙出发,且在甲前面时,,
解得t=;
当乙到大目的地,甲自己行走时,,
解得t=;
∴④错误;
故选B.
【点睛】
本题考查了函数的图像,一次函数的解析式确定,交点的意义,熟练掌握待定系数法,准确捕获图像信息是解题的关键.
二、填空题
1、 ③ ①③④ ② ①
【解析】
略
2、 第二、四象限 下降 减少 第一、三象限 上升 增大
【解析】
略
3、3
【解析】
【分析】
根据直线平移的规律得到平移后的函数解析式,将点代入即可.
【详解】
解:将直线向上平移个单位后得到的直线解析式为,
点在平移后的直线上,
,
,
.
故答案为:3.
【点睛】
此题考查了一次函数平移的规律:左加右减,上加下减,熟记规律是解题的关键.
4、 一次函数 交点
【解析】
略
5、
【解析】
【分析】
根据两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组求解.
【详解】
解:由图像可知二元一次方程组的解是,
故答案为:
【点睛】
本题考查了一次函数与二元一次方程(组):两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组.
三、解答题
1、 (1)2,1
(2)垂直且相等,见解析
(3)点、的坐标分别为、或、
【解析】
【分析】
(1)分别求出点A,B的坐标,将点坐标代入求得b,从而得直线BD的解析式,再把点C坐标代入BD解析式,从而求出m的值;
(2)分别求出,即可求解;
(3)证明△MHQ≌△QGN(AAS),则MH=GQ,NG=QH,即可求解.
(1)
对于y=2x+2,令x=0,则y=2,令y=0,即y=2x+2=0,解得x=-1,
故点A、B的坐标分别为(-1,0)、(0,2),
∵直线过点B,将点B坐标代入上式并解得:故b=2,
则该直线的表达式为,
当x=-3时,=1=m,
即点C(-3,1);
故答案为:2,1;
(2)
由(1)知,点A、B、C的坐标分别为(-1,0)、(0,2)、(-3,1),
则,
同理,,
则AB2+AC2=BC2,
故∠BAC为直角,且AC=BA
故线段CA与线段BA之间的关系为垂直且相等;
(3)
当△MNQ是以点Q为直角顶点的等腰三角形时,∠MQN=90°,QM=QN,
设点M、N的坐标分别为(s,2s+2)、(t,t+2),
过点Q作x轴的平行线交过点M与y轴的平行线于点H,交过点N与y轴的平行线于点G,
∵∠NQG+∠MQH=90°,∠NQG+∠QNG=90°,
∴∠MQH=∠QNG,
∵∠MHQ=∠QGN=90°,MQ=NQ,
∴△MHQ≌△QGN(AAS),
∴MH=GQ,NG=QH,
即2s+2-(-1)=-t(或-1-2s-2=-t),s=t+2-(-1)(或-s=t+2+1),
解得:s=65t=-275或,
所以,点、的坐标分别为、或、
【点睛】
本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、三角形全等等,其中(3),要注意分类求解,避免遗漏.
2、 (1)(,3)或(4,3)
(2)45°
(3)y=-x+
【解析】
【分析】
(1)是直角三角形,分两种情况:①,,轴,进而得出点坐标;②,,如图过点Q作,垂足为C,在中,由勾股定理知,设,在中,由勾股定理知,在中,由勾股定理知,有,求解x的值,即的长,进而得出点坐标;
(2)如图,点P翻折后落在线段AB上的点E处,由翻折性质和可得,,,,点E是AB的中点,过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H, 可证,求出EF的值,的值,有,用证明,知,,进而可求的值;
(3)如图,由旋转的性质可知,,证,可知,,过点A作AG⊥BQ于G,设,则,在中,,由勾股定理得,解得的值,进而求出点的坐标,设过点的直线解析式为,将两点坐标代入求解即可求得解析式.
(1)
解:∵是直角三角形,点,点
∴①当时,
∵轴
∴点坐标为;
②当时,,如图过点Q作,垂足为C
在中,由勾股定理知
设,在中,由勾股定理知
在中,由勾股定理知
∴
解得
∴
∴
∴点坐标为;
综上所述,点坐标为或.
(2)
解:如图,点P翻折后落在线段AB上的点E处,
则
又∵
∴
∴
∴
∴
∴点E是AB的中点
过点E作EF⊥BQ于点F,EM⊥AO于点M,过点Q作QH⊥OP于点H,
在和中
∵∠AEM=∠BEF∠EMA=∠EFBAE=BE
∴
∴
∴EF=
∵
∴
在和中
∵
∴
∴
∴
∴.
(3)
解:如图
由旋转的性质可知
∵
∴
在和中
∠P'QA=∠PAQAQ=QA∠P'AQ=∠PQA
∴
∴
∴
过点A作AG⊥BQ于G
设
∴
在中,,由勾股定理得
解得
∴
∴点的坐标分别为
设过点的直线解析式为
将两点坐标代入得
解得:
∴过点的直线解析式为.
【点睛】
本题考查了翻折的性质,三角形全等,勾股定理,一次函数等知识.解题的关键在于将知识灵活综合运用.
3、 (1)s=t;0≤t≤6
(2)见解析
(3)2
【解析】
【分析】
(1)设直线的解析式为,将代入即可求出,由图象可直接得出的范围;
(2)根据甲的速度,可得出行驶时间,得到终点时点的坐标,作出直线即可;
(3)用甲行驶的路程减去乙行驶的路程即可.
(1)
解:设直线的解析式为,且,
,解得;
;
由图象可知,;
故答案为:;;
(2)
解:甲的速度是每小时4千米,
甲所用的时间(小时),
,
图象如下图所示:
(3)
解:下午3点时,甲、乙两人之间的距离为:.
故答案为:2.
【点睛】
本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
4、 (1);
(2)作图见解析;
【解析】
【分析】
(1)分别令,进而即可求得此函数图象与坐标轴的交点坐标;
(2)根据(1)所求得的点的坐标,画出一次函数图象即可,根据图象写出当时,自变量的取值范围即可.
(1)
令,解得,令,解得
则此函数图像与x轴的交点坐标为、与y轴的交点坐标为
(2)
过点;作直线,如图,
根据函数图象可得当时,x的取值范围是:
故答案为:
【点睛】
本题考查了画一次函数图象,一次函数与坐标轴的交点,根据函数图象求自变量的范围,掌握一次函数的图象的性质是解题的关键.
5、 (1)3,3,画函数图象见解析;
(2)①;②m>1;
(3)见解析
【解析】
【分析】
(1)列表、描点,连线画出函数图象即可;
(2)观察图形,根据图象的性质即可得到结论;
(3)结合(2)中图象的性质,即可得到结论.
(1)
解:列表:
x
﹣2
﹣1
0
1
2
3
4
5
6
y
4
3
2
1
0
1
2
3
4
描点、连线,画出函数y=|x﹣2|图象如图:
(2)
解:点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上,
观察图象:y=|x﹣2|图象关于直线x=2对称,且当x>2时,y随x增大而增大,当x<2时,y随x增大而减小,而m+2>m,
①若y1=y2,则m+2-2=2-m,解得m=1;
②若y1<y2,则m>1,
故答案为:1,m>1;
(3)
解:对于函数y=k|x−b|,当k>0时,函数值y先随x的增大而减小,函数值为0后,再随x的增大而增大.
【点睛】
本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质,数形结合解题是关键.
冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题: 这是一份冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共28页。试卷主要包含了直线不经过点,如图,一次函数y=kx+b,已知一次函数y=kx+b等内容,欢迎下载使用。
2020-2021学年第二十一章 一次函数综合与测试随堂练习题: 这是一份2020-2021学年第二十一章 一次函数综合与测试随堂练习题,共27页。试卷主要包含了已知是一次函数,则m的值是等内容,欢迎下载使用。
初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题,共29页。试卷主要包含了一次函数的大致图象是等内容,欢迎下载使用。