|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年冀教版八年级数学下册第二十一章一次函数综合训练试卷(精选)
    立即下载
    加入资料篮
    2021-2022学年冀教版八年级数学下册第二十一章一次函数综合训练试卷(精选)01
    2021-2022学年冀教版八年级数学下册第二十一章一次函数综合训练试卷(精选)02
    2021-2022学年冀教版八年级数学下册第二十一章一次函数综合训练试卷(精选)03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练

    展开
    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共28页。

    八年级数学下册第二十一章一次函数综合训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是( )

    A. B. C.3h D.
    2、在同一平面直角坐标系中,函数的图象与函数的图象互相平行,则下列各点在函数的图象上的点是( )
    A. B. C. D.
    3、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
    A. B. C. D.
    4、如图,甲乙两人沿同一直线同时出发去往B地,甲到达B地后立即以原速沿原路返回,乙到达B地后停止运动,已知运动过程中两人到B地的距离y(km)与出发时间t(h)的关系如图所示,下列说法错误的是(  )

    A.甲的速度是16km/h
    B.出发时乙在甲前方20km
    C.甲乙两人在出发后2小时第一次相遇
    D.甲到达B地时两人相距50km
    5、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度(m)与挖掘时同(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是( )

    A.甲队的挖掘速度大于乙队的挖掘速度
    B.开挖2h时,甲、乙两队所挖的河渠的长度相差8m
    C.乙队在的时段,与之间的关系式为
    D.开挖4h时,甲、乙两队所挖的河渠的长度相等
    6、我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(图1).图2中,分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系,下列说法错误的是( ).

    A.快艇的速度比可疑船只的速度快0.3海里/分
    B.5分钟时快艇和可疑船只的距离为3.5海里
    C.若可疑船只一直匀速行驶,则它从海岸出发0.5小时后,快艇才出发追赶
    D.当快艇出发分钟后追上可疑船只,此时离海岸海里
    7、AB两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离s(km)与时间t(h)的关系如图所示,则甲出发( )小时后与乙相遇.

    A.1.5 B.2 C.2.5 D.3
    8、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为( )

    A. B.
    C. D.
    9、已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为( )
    A. B.
    C. D.
    10、点A(3,)和点B(-2,)都在直线y=-2x+3上,则和的大小关系是( )
    A. B. C. D.不能确定
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知一次函数的图象过点(3,5)与(-4,-9),求一次函数的解析式.
    分析:求一次函数y=kx+b的解析式,关键是求出k,b的值.从已知条件可以列出关于k,b的二元一次方程组,并求出k,b.
    解:设这个一次函数的解析为:y=kx+b
    因为y=kx+b的图象过点(3,5)与(-4,-9),所以

    解方程组得:,
    这个一次函数的解析式为:___
    2、函数y=-7x的图象在______象限内,从左向右______,y随x的增大而______.
    函数y=7x的图象在______象限内,从左向右______,y随x的增大而______.
    3、画出函数y=-6x与y=-6x+5的图象.

    (1)这两个函数的图象形状都是______,并且倾斜程度______.
    (2)函数y=-6x的图象经过______,函数y=-6x+5的图象与y轴交于点______,即它可以看作由直线y=-6x向______平移______个单位长度而得到.
    4、函数y=(m﹣2)x|m﹣1|+2是一次函数,那么m的值为___.
    5、一次函数 y=2x+3 的图象经过第____________象限,y随x的增大而______ ,与y轴交点坐标为_________.
    三、解答题(5小题,每小题10分,共计50分)
    1、平面直角坐标系内有一平行四边形点,,,,有一次函数的图象过点

    (1)若此一次函数图象经过平行四边形边的中点,求的值
    (2)若此一次函数图象与平行四边形始终有两个交点,求出的取值范围
    2、已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.

    (1)当线段PC与线段AB平行时,求点P的坐标,并求此时△POC的面积与△AOB的面积的比值.
    (2)当△AOB被线段PC分成的两部分面积相等时,求线段PC所在直线的解析式;
    (3)若△AOB被线段PC分成的两部分面积比为1:5时,求线段PC所在直线的解析式.
    3、为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.
    (1)求今年每套A型、B型一体机的价格各是多少万元?
    (2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?
    4、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB=;直线l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.

    (1)求k的值;
    (2)求四边形OCNB的面积;
    (3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.
    5、为了做好防疫工作,学校准备购进一批消毒液.已知A型消毒液7元/瓶,B型消毒液9元/瓶.学校准备购进这两种消毒液共90瓶.
    (1)写出购买所需总费用w元与A瓶个数x之间的函数表达式;
    (2)若B型消毒液的数量不少于A型消毒液数量的,请设计最省钱的购买方案,并求出最少费用.

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    根据图象得出,慢车的速度为 km/h,快车的速度为 km/h.从而得出快车和慢车对应的y与t的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.
    【详解】
    解:根据图象可知,慢车的速度为 km/h.
    对于快车,由于往返速度大小不变,总共行驶时间是6h,
    因此单程所花时间为3 h,故其速度为 km/h.
    所以对于慢车,y与t的函数表达式为y=t (0≤t≤9)①.
    对于快车,y与t的函数表达式为
    y=,
    联立①②,可解得交点横坐标为t=4.5,
    联立①③,可解得交点横坐标为t=,
    因此,两车先后两次相遇的间隔时间是,
    故选:A.
    【点睛】
    本题主要考查根据函数图象求一次函数表达式,以及求两个一次函数的交点坐标.解题的关键是利用图象信息得出快车和慢车的速度,进而写出y与t的关系.
    2、C
    【解析】
    【分析】
    根据题意两个函数图象互相平行可得,即可确定函数解析式,然后将选项各点代入检验即可确定哪个点在直线上.
    【详解】
    解:函数的图象与函数的图象互相平行,
    ∴,
    ∴,
    当时,,选项A不在直线上;
    当时,,选项B不在直线上;
    当时,y=6-3=3,选项C在直线上;
    当时,,选项D不在直线上;
    故选:C.
    【点睛】
    题目主要考查确定一次函数的解析式及确定点是否在直线上,熟练掌握确定一次函数解析式的方法是解题关键.
    3、B
    【解析】
    【分析】
    根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.
    【详解】
    解:∵直线y=kx+b经过一、二、四象限,
    ∴k<0,b>0,
    ∴﹣k>0,
    ∴直线y=bx﹣k过一、二、三象限,
    ∴选项B中图象符合题意.
    故选:B
    【点睛】
    本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
    4、D
    【解析】
    【分析】
    由图可知甲10小时所走路程是160km,即得甲的速度是16km/h,可判定A;根据出发时甲距B地80千米,乙距B地60千米,可判断B;由图得乙的速度是6km/h,即可得甲2小时比乙多走20km,可判断C;甲5小时达到B地可求此时乙所走路程为30km,即得甲到达B地时两人相距30km,可判断D.
    【详解】
    解:由图可知:甲10小时所走路程是80×2=160(km),
    ∴甲的速度是16km/h,故A正确,不符合题意;
    ∵出发时甲距B地80千米,乙距B地60千米,
    ∴发时乙在甲前方20km,故B正确,不符合题意;
    由图可得乙的速度是60÷10=6(km/h),
    ∴出发2小时,乙所走路程是6×2=12(km),甲所走路程为16×2=32(km),
    即甲2小时比乙多走20km,
    ∴甲乙两人在出发后2小时第一次相遇,故C正确,不符合题意;
    ∵甲5小时达到B地,此时乙所走路程为5×6=30(km),
    ∴甲到达B地时两人相距60-30=30(km),故D不正确,符合题意;
    故选:D.
    【点睛】
    本题考查一次函数的应用,解题的关键是理解图象中特殊点的意义.
    5、D
    【解析】
    【分析】
    根据图象依次分析判断.
    【详解】
    解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;
    开挖2h时,乙队所挖的河渠的长度为30m,
    甲队每小时挖=10m,故2h时,甲队所挖的河渠的长度为20m,
    开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;
    由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;
    甲队开挖4h时,所挖河渠的长度为,
    乙队开挖2小时后的函数解析式为,当开挖4h时,共挖40m,故选项D符合题意;
    故选:D.
    【点睛】
    此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.
    6、C
    【解析】
    【分析】
    根据图象分别计算两船的速度判断A正确;利用图象计算出发5分钟时的距离差判断B正确;可疑船只出发5海里后快艇追赶,计算时间判断C错误正确;设快艇出发t分钟后追上可疑船只,列方程,求解即可判断D正确.
    【详解】
    解:快艇的速度为,可疑船只的速度为(海里/分),
    ∴快艇的速度比可疑船只的速度快0.5-0.2=0.3海里/分,故A选项不符合题意;
    5分钟时快艇和可疑船只的距离为海里,故B选项不符合题意;
    由图象可知:可疑船只出发5海里后快艇追赶,分钟=小时,故选项C符合题意;
    设快艇出发t分钟后追上可疑船只,,解得t=,
    这时离海岸海里,故D选项不符合题意;
    故选:C.
    【点睛】
    此题考查了一次函数的图象,正确理解函数图象并得到相关信息进行计算是解题的关键.
    7、B
    【解析】
    【分析】
    根据题意结合图象分别求出甲减速后的速度已经乙的速度,再列方程解答即可.
    【详解】
    解:甲减速后的速度为:(20﹣8)÷(4﹣1)=4(km/h),乙的速度为:20÷5=4(km/h),
    设甲出发x小时后与乙相遇,
    根据题意得8+4(x﹣1)+4x=20,
    解得x=2.
    即甲出发2小时后与乙相遇.
    故选:B.
    【点睛】
    本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.
    8、C
    【解析】
    【分析】
    由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.
    【详解】
    解:令直线中,得到,故,
    令直线中,得到,故,
    由勾股定理可知:,
    ∵,且,
    ∴,,
    过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:

    ∵为等边三角形,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    同理,∵为等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    设直线CD的解析式为:y=kx+b,代入和,
    得到:,解得,
    ∴CD的解析式为:,
    与直线联立方程组,
    解得,故E点坐标为,
    故选:C.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.
    9、D
    【解析】
    【分析】
    根据一次函数的图象与系数的关系,由一次函数图象分析可得m、n的符号,进而可得mn的符号,从而判断的图象是否正确,进而比较可得答案.
    【详解】
    A、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;
    B、由一次函数图象可知,,即,与正比例函数的图象可知,矛盾,故此选项错误;
    C、由一次函数图象可知,,即;正比例函数的图象可知,矛盾,故此选项错误;
    D、由一次函数图象可知,,即,与正比例函数的图象可知,故此选项正确;
    故选:D.
    【点睛】
    此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
    10、C
    【解析】
    【分析】
    利用一次函数的增减性性质判定即可.
    【详解】
    ∵直线y=-2x+3的k=-2<0,
    ∴y随x的增大而减小,
    ∵-2<3,
    ∴,
    故选C.
    【点睛】
    本题考查了一次函数的增减性,熟练掌握性质是解题的关键.
    二、填空题
    1、y=2x-1
    【解析】

    2、 第二、四象限 下降 减少 第一、三象限 上升 增大
    【解析】

    3、 一条直线 相同 原点 (0,5) 上 5
    【解析】

    4、0
    【解析】
    【分析】
    根据一次函数的定义,列出关于m的方程和不等式进行求解即可.
    【详解】
    解:由题意得,|m-1|=1且m-2≠0,
    解得:m=2或m=0且m≠2,
    ∴m=0.
    故答案为:0.
    【点睛】
    本题主要考查了一次函数,一次函数y=kx+b的条件是:k、b为常数,k≠0,自变量次数为1.
    5、 一,二,三 增大 (0,3)
    【解析】

    三、解答题
    1、 (1)k=;
    (2)−1<k<,且k≠0.
    【解析】
    【分析】
    (1)设OA的中点为M,根据M、P两点的坐标,运用待定系数法求得k的值;
    (2)当一次函数y=kx+b的图象过B、P两点时,求得k的值;当一次函数y=kx+b的图象过A、P两点时,求得k的值,最后判断k的取值范围.
    (1)
    解:设OA的中点为M,
    ∵O(0,0),A(4,0),
    ∴OA=4,
    ∴OM=2,
    ∴M(2,0),
    ∵一次函数y=kx+b的图象过M(2,0),P(6,1)两点,
    ∴,
    解得:k=;
    (2)
    如图,由一次函数y=kx+b的图象过定点P,作直线BP,AP与平行四边形只有一个交点,由于直线与平行四边形有两个交点,所以直线应在直线BP,AP之间,
    当一次函数y=kx+b的图象过B、P两点时,
    代入表达式y=kx+b得到:,
    解得:k=-1,
    当一次函数y=kx+b的图象过A、P两点时,
    代入表达式y=kx+b得到:,
    解得:k=,
    所以−1<k<,
    由于要满足一次函数的存在性,
    所以−1<k<,且k≠0.

    【点睛】
    本题考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.
    2、 (1)P(0,1);△POC的面积与△AOB的面积的比值为;
    (2)y=﹣2x+2;
    (3)线段PC所在直线的解析式为:y=4x﹣4或y=x+
    【解析】
    【分析】
    (1)先求出A、B坐标,进而求出△ABC的面积,再利用待定系数法求得PC所在直线解析式,进而求得点P坐标和△POC的面积即可;
    (2)根据三角形一边上的中线将三角形面积平分可得点P与点B重合,此时P(0,2),利用待定系数法求得PC所在直线解析式即可;
    (3)分①当点P在线段AB上时和②当点P在线段OB上时两种情况,根据三角形面积公式求出点P纵坐标,进而求得点P坐标,再利用待定系数法求PC所在直线的解析式即可.
    (1)
    解:∵直线y=﹣x+2与x轴、y轴分别交于点A和点B,
    ∴A(2,0),B(0,2),
    ∴OA=OB=2,
    ∴∠OAB=∠OBA=45°,
    ∴.
    当线段PC与线段AB平行时,可画出图形,

    设PC所在直线的解析式为y=﹣x+m,
    ∵C(1,0),
    ∴﹣1+m=0,解得,m=1,
    ∴PC所在直线的解析式为:y=﹣x+1,
    ∴P(0,1);
    此时,,
    ∴.
    即P(0,1);△POC的面积与△AOB的面积的比值为;
    (2)
    解:由题意可知,点C是线段OA的中点,当△AOB被线段PC分成的两部分面积相等时,点P与点B重合,此时P(0,2),
    设PC所在直线的解析式为:y=kx+b,
    ∴,解得,,
    ∴线段PC所在直线的解析式为:y=﹣2x+2.
    (3)
    解:根据题意,需要分类讨论:
    ①当点P在线段AB上时,如图所示,此时,

    过点P作PD⊥x轴于点D,
    ∴,解得:,
    ∴AD=PD=,
    ∴OD=OA﹣AD=2﹣=,
    ∴P(,),
    设线段PC所在直线的解析式:y=k1x+b1,
    ∴,解得,,
    ∴线段PC所在直线的解析式:y=4x﹣4;
    ②当点P在线段OB上时,如图所示,此时,

    ∴,解得,,
    ∴P(0,),
    设线段PC所在直线的解析式:y=k2x+b2,
    ∴,解得,,
    ∴线段PC所在直线的解析式:y=x+;
    综上可知,线段PC所在直线的解析式为:y=4x﹣4或y=x+.
    【点睛】
    本题考查待定系数法求一次函数的解析式、一次函数图象与坐标轴交点问题、坐标与图形、三角形的面积公式、三角形的中线性质,熟练掌握待定系数法求一次函数的解析式,利用数形结合和分类讨论思想求解是解答的关键.
    3、 (1)今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元
    (2)1800万
    【解析】
    【分析】
    (1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,根据题意列出二元一次方程组,解方程组求解即可;
    (2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,列出一元一次不等式组求得的范围,进而设明年需投入W万元,根据题意列出关于的关系式,根据一次函数的性质求得最小值即可求解.
    (1)
    设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,
    由题意得:,
    解得:
    答:今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元;
    (2)
    设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,
    由题意可得:1.8(1100-m)≥1.2(1+25%)m,
    解得:m≤600,
    设明年需投入W万元,
    W=1.2×(1+25%)m+1.8(1100-m)
    =-0.3m+1980,
    ∵-0.3<0,
    ∴W随m的增大而减小,
    ∵m≤600,
    ∴当m=600时,W有最小值-0.3×600+1980=1800,
    故该市明年至少需投入1800万元才能完成采购计划.
    【点睛】
    本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出二元一次方程组、不等式以及一次函数关系式是解题的关键.
    4、 (1)k=2;
    (2)7;
    (3)≤m≤3
    【解析】
    【分析】
    (1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;
    (2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;
    (3)先求得点P的纵坐标,根据题意列不等式组求解即可.
    (1)
    解:令x=0,则y=2;
    ∴B (0,2),
    ∴OB=2,
    ∵AB=;
    ∴OA=1,
    ∴A (-1,0),
    把B (-1,0)代入y=kx+2得:0=-k+2,
    ∴k=2;
    (2)
    解:∵直线l2平行于直线y=−2x.
    ∴设直线l2的解析式为y=−2x+b.
    把(2,2)代入得2=−22+b,
    解得:b=6,
    ∴直线l2的解析式为.
    令x=0,则y=6,则D (0,6);令y=0,则x=3,则C (3,0),
    由(1)得直线l1的解析式为.
    解方程组得:,
    ∴N (1,4),
    四边形OCNB的面积=S△ODC- S△NBD
    =
    =7;
    (3)
    解:∵点P的横坐标为m,
    ∴点P的纵坐标为,
    ∴PM=,
    ∵PM≤3,且点P在线段CD上,
    ∴≤3,且m≤3.
    解得:≤m≤3.
    【点睛】
    本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.
    5、 (1)w=-2x+810
    (2)最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶,最低费用为676元
    【解析】
    【分析】
    (1)A瓶个数为x,则B瓶个数为(90-x),根据题意列式计算即可;
    (2)根据B型消毒液的数量不少于A型消毒液数量的,可以得到A型消毒液数量的取值范围,再根据一次函数的性质,即可求得最省钱的购买方案,计算出最少费用.
    (1)
    解:A瓶个数为x,则B瓶个数为(90-x),
    依题意可得:w=7x+9(90-x)=-2x+810;
    (2)
    解:∵B型消毒液的数量不少于A型消毒液数量的,
    ∴,解得,
    由(1)知w=﹣2x+810,
    ∴w随x的增大而减小,
    ∴当x=67时,w取得最小值,
    此时w=﹣2×67+810=676,90﹣x=23,
    答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶,最低费用为676元.
    【点睛】
    本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是列出相应的方程组和列出相应的函数关系式,利用一次函数的性质和不等式的性质解答.

    相关试卷

    数学八年级下册第二十一章 一次函数综合与测试课时作业: 这是一份数学八年级下册第二十一章 一次函数综合与测试课时作业,共29页。试卷主要包含了下列不能表示是的函数的是,如图,一次函数y=kx+b等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试课后测评: 这是一份冀教版八年级下册第二十一章 一次函数综合与测试课后测评,共28页。

    2020-2021学年第二十一章 一次函数综合与测试课后作业题: 这是一份2020-2021学年第二十一章 一次函数综合与测试课后作业题,共31页。试卷主要包含了,两地相距80km,甲等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map