搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练冀教版八年级数学下册第二十一章一次函数综合训练试卷(精选)

    2022年强化训练冀教版八年级数学下册第二十一章一次函数综合训练试卷(精选)第1页
    2022年强化训练冀教版八年级数学下册第二十一章一次函数综合训练试卷(精选)第2页
    2022年强化训练冀教版八年级数学下册第二十一章一次函数综合训练试卷(精选)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学冀教版第二十一章 一次函数综合与测试综合训练题

    展开

    这是一份数学冀教版第二十一章 一次函数综合与测试综合训练题,共31页。
    八年级数学下册第二十一章一次函数综合训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知正比例函数y=3x的图象上有两点M(x1,y1)、N(x2,y2),如果x1>x2,那么y1与y2的大小关系是( )
    A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
    2、当时,直线与直线的交点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    3、一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是( )

    A. B. C.3h D.
    4、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t=18和t=24.其中正确的结论有( )

    A.①② B.①③ C.②④ D.①②④
    5、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.

    则下列结论:
    ①A,B两城相距300千米;
    ②乙车比甲车晚出发1小时,却早到1小时;
    ③乙车出发后2.5小时追上甲车;
    ④当甲、乙两车相距50千米时,或.
    其中正确的结论有( )
    A.1个 B.2个 C.3个 D.4个
    6、关于一次函数的图像与性质,下列说法中正确的是( )
    A.y随x的增大而增大;
    B.当 m=3时,该图像与函数的图像是两条平行线;
    C.不论m取何值,图像都经过点(2,2) ;
    D.不论m取何值,图像都经过第四象限.
    7、在平面直角坐标系中,已知点,点,在x轴上确定点C,使得的周长最小,则点C的坐标是( )
    A. B. C. D.
    8、关于一次函数,下列结论不正确的是( )
    A.图象与直线平行
    B.图象与轴的交点坐标是
    C.随自变量的增大而减小
    D.图象经过第二、三、四象限
    9、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( )

    A.小豪爸爸出发后12min追上小豪 B.小李爸爸的速度为300m/min
    C.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m
    10、如图,函数和的图像相交于点P(1,m),则不等式的解集为( )

    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在弹性限度内,弹簧的长度 y(厘米)是所挂物体质量 x(千克)的一次函数.一根弹簧不挂物体时长14.5厘米;当所挂物体的质量为3千克时,弹簧长16厘米.请写出 y 与x之间的关系式,并求当所挂物体的质量为4千克时弹簧的长度.
    解:设y=kx+b(k≠0)
    由题意得:14.5=b,
    16=3k+b,
    解得:b=___,k=___.
    所以在弹性限度内,___,
    当x=4时,y=0.5×4+14.5=___(厘米).
    即物体的质量为4千克时,弹簧长度为16.5厘米.
    2、如图,直线l1:y=kx+b与直线l2:y=﹣x+4相交于点P,若点P(1,n),则方程组的解是_____.

    3、如图,已知函数和的图象交于点,则根据图象可得,二元一次方程组的解是_______.

    4、点,是直线上的两点,则__.(填,或
    5、已知一次函数的图象经过第一、二、四象限,写出一个满足条件的一次函数的表达式 ___.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知y与成正比例,且当时,;
    (1)求出y与x之间的函数关系式;
    (2)当时,求y的值;
    (3)当时,求x的取值范围.
    2、如图1,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.

    (1)则点A的坐标为_______,点B的坐标为______;
    (2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;
    (3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.
    ①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)
    ②试求线段OQ长的最小值.
    3、如图1,在平面直角坐标系中,直线分别与轴、轴交于、两点,直线分别与轴、轴交于、两点,点是上一点.

    (1)求、的值;
    (2)试判断线段与线段之间的关系,并说明理由;
    (3)如图2,若点是轴上一点,点是直线上一动点,点是直线上一动点,当是以点为直角顶点的等腰三角形时,请直接写出相应的点、的坐标.
    4、甲、乙两人相约周末登山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

    (1)______米;
    (2)求出甲距地面的高度与登山时间的关系式,并指出一次项系数的实际意义;
    (3)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,则在整个爬山过程中,登山多长时间时,甲乙两人距离地面的高度差为70米?
    5、-辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶20km;两车相遇后休息了24分钟,再同时继续行驶,设两车之间的距离为y(km),货车行驶时间为x(h),请结合图像信息解答下列问题:

    (1)货车的速度为______km/h,轿车的速度为______km/h;
    (2)求y与x之间的函数关系式(写出x的取值范围),并把函数图像画完整;
    (3)货车出发______h,与轿车相距30km.

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可得出结论.
    【详解】
    ∵正比例函数y=3x中,k=3>0,
    ∴y随x的增大而增大,
    ∵x1>x2,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x的系数的关系是解题的关键.
    2、B
    【解析】
    【分析】
    根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.
    【详解】
    解:一次函数中,,
    ∴函数图象经过一二四象限
    ∵在一次函数中,,
    ∴直线经过一二三象限
    函数图象如图

    ∴直线与的交点在第二象限
    故选:.
    【点睛】
    本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.
    3、A
    【解析】
    【分析】
    根据图象得出,慢车的速度为 km/h,快车的速度为 km/h.从而得出快车和慢车对应的y与t的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.
    【详解】
    解:根据图象可知,慢车的速度为 km/h.
    对于快车,由于往返速度大小不变,总共行驶时间是6h,
    因此单程所花时间为3 h,故其速度为 km/h.
    所以对于慢车,y与t的函数表达式为y=t (0≤t≤9)①.
    对于快车,y与t的函数表达式为
    y=,
    联立①②,可解得交点横坐标为t=4.5,
    联立①③,可解得交点横坐标为t=,
    因此,两车先后两次相遇的间隔时间是,
    故选:A.
    【点睛】
    本题主要考查根据函数图象求一次函数表达式,以及求两个一次函数的交点坐标.解题的关键是利用图象信息得出快车和慢车的速度,进而写出y与t的关系.
    4、A
    【解析】
    【分析】
    根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】
    解:由题意可得:甲步行的速度为(米分);
    由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,
    故①结论正确;
    ∴乙步行的速度为米/分,
    故②结论正确;
    乙走完全程的时间(分),
    乙到达终点时,甲离终点距离是:(米),
    故③结论错误;
    设9分到23分钟这个时刻的函数关系式为,则把点代入得:
    ,解得:,
    ∴,
    设23分钟到30分钟这个时间的函数解析式为,把点代入得:
    ,解得:,
    ∴,
    把分别代入可得:或,
    故④错误;
    故正确的结论有①②.
    故选:A.
    【点睛】
    本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.
    5、B
    【解析】
    【分析】
    当不动时,距离300千米,就是A,B两地的距离;甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,确定甲,乙的函数解析式,求交点坐标;分甲出发,乙未动,距离为50千米,甲出发,乙出发,且甲在前50距离50千米,甲在后距离50千米,乙到大时距离为50千米四种情形计算即可.
    【详解】
    ∵(0,300)表示不动时,距离300千米,就是A,B两地的距离,
    ∴①正确;
    ∵甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,
    ∴乙车比甲车晚出发1小时,却早到1小时;
    ∴②正确;
    设,
    ∴300=5m,
    解得m=60,
    ∴;
    设,

    解得,
    ∴;

    解得t=2.5,
    ∴2.5-1=1.5,
    ∴乙车出发后1.5小时追上甲车;
    ∴③错误;
    当乙未出发时,,
    解得t=;
    当乙出发,且在甲后面时,,
    解得t=;
    当乙出发,且在甲前面时,,
    解得t=;
    当乙到大目的地,甲自己行走时,,
    解得t=;
    ∴④错误;
    故选B.
    【点睛】
    本题考查了函数的图像,一次函数的解析式确定,交点的意义,熟练掌握待定系数法,准确捕获图像信息是解题的关键.
    6、D
    【解析】
    【分析】
    根据一次函数的增减性判断A;根据两条直线平行时,k值相同而b值不相同判断B;根据一次函数图象与系数的关系判断C、D.
    【详解】
    A、一次函数中,∵,的符号未知,故不能判断函数的增减性,故本选项不正确;
    B、当m=3时,一次函数与的图象不是两条平行线,故本选项不正确;
    C、一次函数,过定点,故本选项不正确;
    D、一次函数,过定点,则不论m取何值,图像都经过第四象限,故本选项正确.
    故选D.
    【点睛】
    本题考查了两条直线的平行问题:若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2,b1≠b2.也考查了一次函数的增减性以及一次函数图象与系数的关系.
    7、C
    【解析】
    【分析】
    因为AB的长度是确定的,故△CAB的周长最小就是CA+CB的值最小,作点A关于x轴的对称点A′,连接A′B交x轴于点C,求出C点坐标即可.
    【详解】
    解:如图,作点A关于x轴的对称点A′,连接A′B交x轴于点C,此时,AC+BC=A′C+BC=AC,长度最小,
    ∵A(-1,2),
    ∴A′(-1,﹣2),
    设直线A′B的解析式为y=kx+b(k≠0),把A′(-1,﹣2),代入得,
    ∴,解得,
    ∴直线A′B的解析式为y=-2x﹣4,
    当y=0时,x=-2,
    ∴C(-2,0).
    故选:C

    【点睛】
    本题考查了轴对称-最短路径问题,一次函数与坐标轴交点问题,解题关键是确定点C的位置,利用一次函数解析式求坐标.
    8、D
    【解析】
    【分析】
    根据一次函数的性质对A、C、D进行判断;根据一次函数图象上点的坐标特征对D进行判断,,随的增大而增大,函数从左到右上升;,随的增大而减小,函数从左到右下降.由于与轴交于,当时,在轴的正半轴上,直线与轴交于正半轴;当时,在轴的负半轴,直线与轴交于负半轴.
    【详解】
    解:A、函数的图象与直线平行,故本选项说法正确;
    B、把代入,所以它的图象与轴的交点坐标是,故本选项说法正确;
    C、,所以随自变量的增大而减小,故本选项说法正确;
    D、,,函数图象经过第一、二、四象限,故本选项说法不正确;
    故选:D.
    【点睛】
    本题考查了一次函数的性质,以及k对自变量和因变量间的关系的影响,熟练掌握k的取值对函数的影响是解决本题的关键.
    9、B
    【解析】
    【分析】
    根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.
    【详解】
    解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:
    (5x+5×x)÷5=x(m/min),
    ∵公司位于家正西方500米,
    ∴(−10−2)×x=500+(5+2.5)x,
    解得x=200,
    ∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×=300m/min,
    爸爸到达公司时,丁丁距离商店路程为:
    3500-(−12)×(300+200)=m.
    综上,正确的选项为B.
    故选:B.
    【点睛】
    本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.
    10、B
    【解析】
    【分析】
    由题意首先确定y=mx和y=kx-b的交点以及作出y=kx-b的大体图象,进而根据图象进行判断即可.
    【详解】
    解:∵y=kx+b的图象经过点P(1,m),
    ∴k+b=m,
    当x=-1时,kx-b=-k-b=-(k+b)=-m,
    即(-1,-m)在函数y=kx-b的图象上.
    又∵(-1,-m)在y=mx的图象上.
    ∴y=kx-b与y=mx相交于点(-1,-m).
    则函数图象如图.

    则不等式-b≤kx-b≤mx的解集为-1≤x≤0.
    故选:B.
    【点睛】
    本题考查一次函数与不等式的关系,运用数形结合思维分析并正确确定y=kx-b和y=mx的交点是解题的关键.
    二、填空题
    1、 14.5 0.5 16.5
    【解析】

    2、
    【解析】
    【分析】
    由两条直线的交点坐标P(1,n),先求出n,再求出方程组的解即可.
    【详解】
    解:∵y=﹣x+4经过P(1,n),
    ∴n=-1+4=3,
    ∴n=3,
    ∴直线l1:y=kx+b与直线l2:y=﹣x+4相交于点P(1,3),
    ∴,
    故答案为.
    【点睛】
    本题考查了一次函数的交点与方程组的解的关系、待定系数法等知识,解题的关键是理解方程组的解就是两个函数图象的交点坐标.
    3、
    【解析】
    【分析】
    根据两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组求解.
    【详解】
    解:由图像可知二元一次方程组的解是,
    故答案为:
    【点睛】
    本题考查了一次函数与二元一次方程(组):两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组.
    4、
    【解析】
    【分析】
    根据正比例函数的增减性进行判断即可直接得出.
    【详解】
    解:,
    y随着x的增大而减小,


    故答案为:.
    【点睛】
    题目主要考查正比例函数的增减性质,理解题意,熟练掌握运用函数的增减性是解题关键.
    5、(答案不唯一)
    【解析】
    【分析】
    根据一次函数的图象与性质即可得.
    【详解】
    解:设这个一次函数表达式为,
    ∵一次函数图象经过第一、二、四象限,
    ∴,,
    ∴取,,
    可得,
    故答案为:(答案不唯一).
    【点睛】
    本题考查了一次函数的图象与性质,根据一次函数的图象与性质判断出,是解题关键.
    三、解答题
    1、 (1)
    (2)
    (3)
    【解析】
    【分析】
    (1)根据正比例的定义,设y=k(x+2),然后把已知一组对应值代入求出k即可;
    (2)利用(1)中的函数关系式求自变量为−3对应的函数值即可;
    (3)通过解不等式2x+4<−2即可.
    (1)
    解:设y=k(x+2)(k≠0),
    当x=1,y=6得k(1+2)=6,
    解得k=2,
    所以y与x之间的函数关系式为y=2x+4;
    (2)
    x=−3 时,y=2×(−3)+4=−2;
    (3)
    y<−2 时,2x+4<−2,
    解得.
    【点睛】
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
    2、 (1)(-3,0);(0,4)
    (2)证明见解析
    (3)①∠QPO,∠BAQ;②线段OQ长的最小值为
    【解析】
    【分析】
    (1)根据题意令x=0,y=0求一次函数与坐标轴的交点;
    (2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;
    (3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:,推出点Q在直线y=﹣x+4上运动,再根据垂线段最短,即可解决问题.
    (1)
    解:在y=x+4中,令y=0,得0=x+4,
    解得x=﹣3,
    ∴A(﹣3,0),
    在y=x+4中,令x=0,得y=4,
    ∴B(0,4);
    故答案为:(﹣3,0),(0,4).
    (2)
    证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,
    ∵PB=PE,
    ∴∠PBE=∠PEB=α,
    ∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),
    ∴∠BPE=2∠OAB.
    (3)
    解:①结论:∠QPO,∠BAQ
    理由:如图3中,∵∠APQ=∠BPE=2∠OAB,
    ∵∠BPE=2∠OAB,
    ∴∠APQ=∠BPE.
    ∴∠APQ﹣∠APB=∠BPE﹣∠APB.
    ∴∠QPO=∠EPA.
    又∵PE=PB,AP=PQ
    ∴∠PEB=∠PBE=∠PAQ=∠AQP.
    ∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.
    ∴与∠EPA相等的角有∠QPO,∠BAQ.
    故答案为:∠QPO,∠BAQ.
    ②如图3中,连接BQ交x轴于T.

    ∵AP=PQ,PE=PB,∠APQ=∠BPE,
    ∴∠APE=∠QPB,
    在△APE和△QPB中,,
    ∴△APE≌△QPB(SAS),
    ∴∠AEP=∠QBP,
    ∵∠AEP=∠EBP,
    ∴∠ABO=∠QBP,
    ∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,
    ∴∠BAO=∠BTO,
    ∴BA=BT,
    ∵BO⊥AT,
    ∴OA=OT,
    ∴直线BT的解析式为为:,
    ∴点Q在直线y=﹣x+4上运动,
    ∵B(0,4),T(3,0).
    ∴BT=5.
    当OQ⊥BT时,OQ最小.
    ∵S△BOT=×3×4=×5×OQ.
    ∴OQ=.
    ∴线段OQ长的最小值为.
    【点睛】
    本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.
    3、 (1)2,1
    (2)垂直且相等,见解析
    (3)点、的坐标分别为、或、
    【解析】
    【分析】
    (1)分别求出点A,B的坐标,将点坐标代入求得b,从而得直线BD的解析式,再把点C坐标代入BD解析式,从而求出m的值;
    (2)分别求出,即可求解;
    (3)证明△MHQ≌△QGN(AAS),则MH=GQ,NG=QH,即可求解.
    (1)
    对于y=2x+2,令x=0,则y=2,令y=0,即y=2x+2=0,解得x=-1,
    故点A、B的坐标分别为(-1,0)、(0,2),
    ∵直线过点B,将点B坐标代入上式并解得:故b=2,
    则该直线的表达式为,
    当x=-3时,=1=m,
    即点C(-3,1);
    故答案为:2,1;
    (2)
    由(1)知,点A、B、C的坐标分别为(-1,0)、(0,2)、(-3,1),
    则,
    同理,,
    则AB2+AC2=BC2,
    故∠BAC为直角,且AC=BA
    故线段CA与线段BA之间的关系为垂直且相等;
    (3)
    当△MNQ是以点Q为直角顶点的等腰三角形时,∠MQN=90°,QM=QN,
    设点M、N的坐标分别为(s,2s+2)、(t,t+2),
    过点Q作x轴的平行线交过点M与y轴的平行线于点H,交过点N与y轴的平行线于点G,

    ∵∠NQG+∠MQH=90°,∠NQG+∠QNG=90°,
    ∴∠MQH=∠QNG,
    ∵∠MHQ=∠QGN=90°,MQ=NQ,
    ∴△MHQ≌△QGN(AAS),
    ∴MH=GQ,NG=QH,
    即2s+2-(-1)=-t(或-1-2s-2=-t),s=t+2-(-1)(或-s=t+2+1),
    解得:s=65t=-275或,
    所以,点、的坐标分别为、或、
    【点睛】
    本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、三角形全等等,其中(3),要注意分类求解,避免遗漏.
    4、 (1)30;
    (2)y=10x+100;一次项的系数是表示甲登山的速度;
    (3)3或10或13分钟
    【解析】
    【分析】
    (1)根据图象直接得到答案;
    (2)利用待定系数法解答;
    (3)求出甲登山速度,由此求出乙登山的函数解析式,列方程当10x+100−(30x−30)=70时,解得,当30x−30−(10x+100)=70时,当300−(10x+100)=70时,解方程即可.
    (1)
    解:由图象可得b=15÷1×2=30米,
    故答案为:30.
    (2)
    解:设甲距地面的高度与登山时间的关系式y=kx+m,
    由图象可得,过点C(0,100)、D(20,300),
    ∴,解得,
    ∴甲距地面的高度与登山时间的关系式y=10x+100;
    一次项的系数是表示甲登山的速度;
    (3)
    解:甲登山速度为(300-100)÷20=10(米/分钟),
    当0≤x≤2时,y=15x;当x≥2时,y=30+10×3(x-2)=30x-30.
    当y=30x-30=300时,x=11.
    甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0⩽x⩽20),
    当10x+100−(30x−30)=70时,解得:x=3;
    当30x−30−(10x+100)=70时,解得:x=10;
    当300−(10x+100)=70时,解得:x=13.
    ∴登山3分钟、10分钟或13分钟时,甲乙两人距离地面的高度差为70米.
    【点睛】
    此题考查了一次函数的图象,一元一次方程的应用,待定系数法求函数解析式,正确理解函数图象并应用解决问题是解题的关键.
    5、 (1)80,100
    (2)当时,;当时,;当时,;当时,,图见解析
    (3)或
    【解析】
    【分析】
    (1)结合图象可得经过两个小时,两车相遇,设货车的速度为,则轿车的速度为,根据题意列出方程求解即可得;
    (2)分别求出各个时间段的函数解析式,然后再函数图象中作出相应直线即可;
    (3)将代入(2)中各个时间段的函数解析式,求解,同时考虑解是否在相应时间段内即可.
    (1)
    解:由图象可得:经过两个小时,两车相遇,
    设货车的速度为,则轿车的速度为,
    ∴,
    解得:,,
    ∴货车的速度为,则轿车的速度为,
    故答案为:80;100;
    (2)
    当时,图象经过,点,
    设直线解析式为:,代入得:

    解得:,
    ∴当时,;
    分钟小时,
    ∵两车相遇后休息了24分钟,
    ∴当时,;
    当时,轿车距离甲地的路程为:,货车距离乙地的路程为:,
    轿车到达甲地还需要:,
    货车到达乙地还需要:,
    ∴当时,;
    当时,;
    当时,;
    当时,;
    当时,;
    ∴函数图象分别经过点,,,
    作图如下:

    (3)
    ①当时,令可得:

    解得:;
    ②当时,令可得:

    解得:;
    ③当时,令可得:

    解得::,不符合题意,舍去;
    综上可得:货车出发或,与轿车相距30km,
    故答案为:或.
    【点睛】
    题目主要考查一元一次方程的应用,一次函数的应用,利用待定系数法确定一次函数解析式,作函数图象等,理解题意,熟练掌握运用一次函数的基本性质是解题关键.

    相关试卷

    初中数学第二十一章 一次函数综合与测试同步达标检测题:

    这是一份初中数学第二十一章 一次函数综合与测试同步达标检测题,共27页。试卷主要包含了点A,已知点,都在直线上,则,已知是一次函数,则m的值是等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试同步训练题:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步训练题,共29页。试卷主要包含了若直线y=kx+b经过一,点A等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试巩固练习:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试巩固练习,共30页。试卷主要包含了直线不经过点,已知点等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map