终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版八年级数学下册第二十一章一次函数定向训练试题(含详细解析)

    立即下载
    加入资料篮
    2021-2022学年最新冀教版八年级数学下册第二十一章一次函数定向训练试题(含详细解析)第1页
    2021-2022学年最新冀教版八年级数学下册第二十一章一次函数定向训练试题(含详细解析)第2页
    2021-2022学年最新冀教版八年级数学下册第二十一章一次函数定向训练试题(含详细解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题

    展开

    这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步练习题,共26页。试卷主要包含了下列函数中,属于正比例函数的是等内容,欢迎下载使用。
    八年级数学下册第二十一章一次函数定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、无论m为何实数.直线的交点不可能在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限2、已知一次函数y=kx+bkb为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,则这个一次函数的表达式可能是(  )A.y=﹣2x+1 B.y=2x+1 C.y=﹣2x﹣1 D.y=2x﹣13、直线在同一直角坐标系中的图象可能是(       A. B.C. D.4、已知点A的坐标为,点A关于x轴的对称点落在一次函数的图象上,则a的值可以是(       A. B. C. D.5、点和点都在直线上,则的大小关系为(       A. B. C. D.6、如图,在RtABO中,∠OBA=90°,A(4,4),且,点DOB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为(       A.(2,2) B.( C.( D.(7、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值(       A.小于0 B.等于0 C.大于0 D.非负数8、甲、乙两车从城出发前往城,在整个行驶过程中,汽车离开城的距离与行驶时间的函数图象如图所示,下列说法正确的有(  )①甲车的速度为;②乙车用了到达城;③甲车出发时,乙车追上甲车A.0个 B.1个 C.2个 D.3个9、下列函数中,属于正比例函数的是(       A. B. C. D.10、如图,已知点是一次函数上的一个点,则下列判断正确的是(       A. B.yx的增大而增大C.当时, D.关于x的方程的解是第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、直线y=2x-4与两坐标轴围成的三角形面积为___________________.2、像h=0.5nT=-2tl=2πr这些函数解析式都是______与______的积的形式.一般地,形如ykxk是常数,k≠0)的函数,叫做______函数,其中k叫做______.3、已知:直线与直线的图象交点如图所示,则方程组的解为______.4、如图,在平面直角坐标系xOy中,直线l1l2分别是关于xy的二元一次方程a1x+b1yc1a2x+b2yc2的图象,则二元一次方程组的解为___.5、已知一次函数的图象过点(3,5)与(-4,-9),求一次函数的解析式.分析:求一次函数ykxb的解析式,关键是求出kb的值.从已知条件可以列出关于kb的二元一次方程组,并求出kb解:设这个一次函数的解析为:ykxb因为ykxb的图象过点(3,5)与(-4,-9),所以解方程组得:这个一次函数的解析式为:___三、解答题(5小题,每小题10分,共计50分)1、如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且(1)分别求出这两个函数的解析式;(2)点轴上,且是等腰三角形,请直接写出点的坐标.2、如图,平面直角坐标系xOy中,点AB的坐标分别为Aa,0),B(0,b),其中ab满足b2﹣8b+16=0,点Py轴上,且在B点上方,PBmm>0),以AP为边作等腰直角△APM,∠APM=90°,PMPA,点M落在第一象限.(1)a   b   (2)求点M的坐标(用含m代数式表示);(3)若射线MBx轴交于点Q,判断点Q的坐标是否随m的变化而变化,若不变,求出Q点的坐标;若变化,请说明理由.3、如图,直线l1的函数解析式为y=﹣x+1,且l1x轴交于点A,直线l2经过点BD,直线l1l2交于点C(1)求直线l2的函数解析式;(2)求△ABC的面积.4、已知y成正比例,且当时,(1)求出yx之间的函数关系式;(2)当时,求y的值;(3)当时,求x的取值范围.5、已知点和直线,则点到直线的距离可用公式计算,例如:求点到直线的距离.解:因为直线,其中所以点到直线的距离:根据以上材料,解答下列问题:(1)求点到直线的距离.(2)已知的圆心的坐标为,半径,判断与直线的位置关系并说明理由.(3)已知互相平行的直线之间的距离是,试求的值. -参考答案-一、单选题1、C【解析】【分析】根据一次函数的图象与系数的关系即可得出结论.【详解】解:∵一次函数y=-x+4中,k=-1<0,b=4>0,∴函数图象经过一二四象限,∴无论m为何实数,直线y=x+2my=-x+4的交点不可能在第三象限.故选:C.【点睛】本题考查的是两条直线相交或平行问题,熟知一次函数的图象与系数的关系是解答此题的关键.2、D【解析】【分析】根据题意和一次函数的性质,可以解答本题.【详解】解:∵一次函数y=kx+bkb为常数,且k≠0)的图象经过点(0,-1),且y的值随x值的增大而增大,b=-1,k>0,故选:D.【点睛】本题考查了待定系数法求一次函数的解析式,一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.3、D【解析】【分析】根据两个解析式中一次项系数的符号相反、常数项的符号相反,结合一次函数的图象与性质即可解决.【详解】根据直线的解析式知,k与-2k符号相反,b与-b符号相反(由图知b0);A选项中的直线与y轴的交点均在y轴正半轴上,故不合题意;B、C两选项中两直线从左往右均是上升的,则k与-2k全为正,也不合题意;D选项中两直线满足题意;故选:D【点睛】本题考查了一次函数的图象与性质,掌握一次函数的图象与性质,数形结合是关键本题的关键.4、C【解析】【分析】由点和点关于轴对称,可求出点的坐标,再利用一次函数图象上点的坐标特征可得出关于的方程,解之即可得出结论.【详解】解:和点关于轴对称,的坐标为在直线上,故选:C.【点睛】本题考查了一次函数图象上点的坐标特征以及关于轴、轴对称的点的坐标,解题的关键是牢记直线上任意一点的坐标都满足函数关系式5、B【解析】【分析】根据 ,可得 的增大而减小,即可求解.【详解】解:∵ 的增大而减小,故选:B【点睛】本题主要考查了一次函数的性质,熟练掌握对于一次函数 ,当 时, 的增大而增大,当 时, 的增大而减小是解题的关键.6、C【解析】【分析】先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.【详解】∵∠OBA=90°,A(4,4),且,点DOB的中点,∴点D(2,0),AC=1,BC=3,点C(4,3),设直线AO的解析式为y=kx∴4=4k,解得k=1,∴直线AO的解析式为y=x过点DDEAO,交y轴于点E,交AO于点F∵∠OBA=90°,A(4,4),∴∠AOE=∠AOB=45°,∴∠OED=∠ODE=45°,OE=ODDF=FE∴点E是点D关于直线AO的对称点,∴点E(0,2),连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,CE的解析式为y=mx+n解得∴直线CE的解析式为y=x+2,解得∴使四边形PDBC周长最小的点P的坐标为(),故选C.【点睛】本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.7、C【解析】【分析】一次函数过第一、二、三象限,则,根据图象结合性质可得答案.【详解】解:如图,函数的图象经过第一、二、三象限,则函数的图象与轴交于正半轴, 故选C【点睛】本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.8、C【解析】【分析】求出正比函数的解析式,k值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y=kx∴6k=300,解得k=50,=50x∴甲车的速度为∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h)到达城,∴②错误;即甲行驶4小时,乙追上甲,∴③正确;故选C【点睛】本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.9、D【解析】【分析】根据正比例函数的定义逐个判断即可.【详解】解:A.是二次函数,不是正比例函数,故本选项不符合题意;B.是一次函数,但不是正比例函数,故本选项不符合题意;C.是反比例函数,不是正比例函数,故本选项不符合题意;D.是正比例函数,故本选项符合题意;故选:D【点睛】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如ykxbkb为常数,k≠0)的函数,叫一次函数,当b=0时,函数也叫正比例函数.10、D【解析】【分析】根据已知函数图象可得,是递减函数,即可判断A、B选项,根据时的函数图象可知的值不确定,即可判断C选项,将B点坐标代入解析式,可得进而即可判断D【详解】A.该一次函数经过一、二、四象限 yx的增大而减小,故A,B不正确;C. 如图,设一次函数轴交于点则当时,,故C不正确D. 将点坐标代入解析式,得关于x的方程的解是故D选项正确故选D【点睛】本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.二、填空题1、【解析】【分析】画出一次函数的图象,再求解一次函数与坐标轴的交点的坐标,再利用三角形的面积公式进行计算即可.【详解】解:如图,令 解得 故答案为:4【点睛】本题考查的是一次函数与坐标轴的交点坐标,一次函数与坐标轴围成的三角形的面积,利用数形结合的方法解题是解本题的关键.2、     常数     自变量     正比例     比例系数【解析】3、【解析】【分析】根据函数图象与二元一次方程组的关系,求方程组的解,就是求两方程所表示的两一次函数图象交点的坐标,从而得出答案.【详解】解:∵函数y=x-b与函数y=mx+6的交点坐标是(2,3),∴方程组的解为故答案为【点睛】本题主要考查了一次函数与二元一次方程组的关系,比较简单,熟悉交点坐标就是方程组的解是解题的关键.4、【解析】【分析】本题可以通过直线与方程的关系得到方程组的解.【详解】解:因为直线l1l2分别是关于xy的二元一次方程a1x+b1y=c1a2x+b2y=c2的图象,其交点为(-2,1),所以二元一次方程组的解为故答案为:【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.5、y=2x-1【解析】三、解答题1、 (1)正比例函数的解析式为:,一次函数的解析式为:(2)【解析】【分析】(1)把点代入可得,再由,可得点 ,即可求解;(2)分三种情况:当OP=OA=5时,当AP=OA时,当AP=OP时,即可求解.(1)解:∵一次函数的图象与轴交于点,与正比例函数的图象相交于点,解得: ∴正比例函数的解析式为:∴点把点 代入,得: ,解得:∴一次函数的解析式为:(2)解:当OP=OA=5时,点的坐标为AP=OA时,过点A 轴于点COC=PC=3,OP=6,∴点AP=OP时,过点PPDOA于点D,过点D 轴于点E∴点DAO的中点,即∵点∴点设点 ,则解得: (舍去)∴点综上所述,点P的坐标为【点睛】本题主要考查了一次函数的图象和性质,等腰三角形的性质,熟练掌握一次函数的图象和性质,等腰三角形的性质,利用分类讨论思想和数形结合解答是解题的关键.2、 (1)4;4(2)m+4m+8(3)不变,(﹣40【解析】【分析】(1)将进行变形,然后根据二次根式有意义的条件及平方的非负性质即可进行求解;(2)过点M轴于点N,利用同角的余角相等可得,根据全等三角形的判定和性质可得,结合图象即可得出结果;(3)设直线MB的解析式为,由(2)结论将点M的坐标代入整理可得,根据题意可得:,将其代入可确定函数解析式,即可确定点Q的坐标.(1)解得:故答案为:44(2)过点M轴于点N中,M的坐标为(3)Q的坐标不变,理由如下:设直线MB的解析式为整理得,解得:直线MB的解析式为无论m的值如何变化,点Q的坐标都不变,为【点睛】题目主要考查二次根式有意义的条件及平方的非负性质,全等三角形的判定和性质,利用待定系数法确定一次函数解析式等,理解题意,综合运用这些知识点是解题关键3、 (1)yx3(2)【解析】【分析】(1)设直线l2的解析式为,将点B、点D两个点代入求解即可确定函数解析式;(2)当y0时,代入直线解析式确定点A的坐标,即可得出的底边长,然后联立两个函数解析式得出交点坐标,点C的纵坐标即为三角形的高,利用三角形面积公式求解即可得.(1)解:设直线l2的解析式为由直线l2经过点可得:解得:直线l2的解析式为(2)y0时,代入直线解析式可得:解得联立解得:【点睛】题目主要考查利用待定系数法确定一次函数解析式,一次函数交点问题,理解题意,熟练掌握运用一次函数的性质是解题关键4、 (1)(2)(3)【解析】【分析】(1)根据正比例的定义,设ykx+2),然后把已知一组对应值代入求出k即可;(2)利用(1)中的函数关系式求自变量为−3对应的函数值即可;(3)通过解不等式2x+4<−2即可.(1)解:设ykx+2)(k≠0),x=1,y=6得k(1+2)=6,解得k=2,所以yx之间的函数关系式为y=2x+4;(2)x=−3 时,y=2×(−3)+4=−2;(3)y<−2 时,2x+4<−2,解得【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设ykxb;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.5、 (1)(2)相切,理由见解析(3)【解析】【分析】(1)将点直接代入距离公式计算.(2)计算圆心到直线的距离,将距离与半径比较,判断圆与直线之间的关系,(3)在直线上任取一点,计算该点到的距离,可求得(1)因为直线,其中所以点到直线的距离:(2)因为直线,其中所以圆心到直线的距离::圆心到直线的距离与直线相切.(3)在直线上取一点根据题意得,点到直线的距离是因为直线,其中所以点到直线的距离:即:解得:【点睛】本题属于一次函数的综合题,主要考查了点到直线的距离公式应用,解题关键是能够理解题目中距离的计算公式,并能结合圆、另一条直线进行计算.根据各数量之间的关系,正确列出一元一次不等式. 

    相关试卷

    数学第二十一章 一次函数综合与测试达标测试:

    这是一份数学第二十一章 一次函数综合与测试达标测试,共30页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。

    冀教版八年级下册第二十一章 一次函数综合与测试习题:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试习题,共19页。

    冀教版八年级下册第二十一章 一次函数综合与测试同步练习题:

    这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步练习题,共24页。试卷主要包含了当时,直线与直线的交点在,已知一次函数y=kx+b等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map