初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试同步达标检测题,共34页。试卷主要包含了一次函数的图象不经过的象限是,已知P1等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若点,都在一次函数的图象上,则与的大小关系是( )
A. B. C. D.
2、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:
x
…
﹣2
﹣1
0
1
2
…
y1
…
1
2
3
4
5
…
x
…
﹣2
﹣1
0
1
2
…
y2
…
5
2
﹣1
﹣4
﹣7
…
则关于x的不等式kx+b>mx+n的解集是( )
A.x>0 B.x<0 C.x<﹣1 D.x>﹣1
3、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )
x(单位:台)
10
20
30
y(单位:万元/台)
60
55
50
A.y=80- 2x B.y=40+ 2x
C.y=65- D.y=60-
4、一次函数的图象不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5、已知P1(﹣3,y1)、P2(2,y2)是y=﹣2x+1的图象上的两个点,则y1、y2的大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
6、已知一次函数y=k1x+b1和一次函数y1=k2x+b2的自变量x与因变量y1,y2的部分对应数值如表所示,则关于x、y的二元一次方程组的解为( )
x
…
﹣2
﹣1
0
1
2
…
y1
…
﹣1
0
1
2
3
…
y2
…
﹣5
﹣3
﹣1
1
3
…
A. B. C. D.
7、在平面直角坐标系中,若函数的图象经过第一、二、三象限,则的取值( )
A.小于0 B.等于0 C.大于0 D.非负数
8、甲、乙两个工程队分别同时开挖两段河集,所挖河架的长度(m)与挖掘时同(h)之间的关系如图所示,根据图像所提供的信息,下列说法正确的是( )
A.甲队的挖掘速度大于乙队的挖掘速度
B.开挖2h时,甲、乙两队所挖的河渠的长度相差8m
C.乙队在的时段,与之间的关系式为
D.开挖4h时,甲、乙两队所挖的河渠的长度相等
9、AB两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离s(km)与时间t(h)的关系如图所示,则甲出发( )小时后与乙相遇.
A.1.5 B.2 C.2.5 D.3
10、一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是( )
A. B. C.3h D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,一次函数x+4的图像与x轴交于点A,与y轴交于点B,C是x轴上的一动点,连接BC,将沿BC所在的直线折叠,当点A落在y轴上时,点C的坐标为_____.
2、将直线向下平移4个单位后,所得直线的表达式是______.
3、画出函数y=-6x与y=-6x+5的图象.
(1)这两个函数的图象形状都是______,并且倾斜程度______.
(2)函数y=-6x的图象经过______,函数y=-6x+5的图象与y轴交于点______,即它可以看作由直线y=-6x向______平移______个单位长度而得到.
4、某工厂有甲、乙、丙、丁四个不同的车间生产电子元件,由于生产设备不同,工人在不同车间日生产量也不一定相同,但皆为整数.某日,该工厂接到一批生产订单,工厂老板想将工人合理分配到不同车间,已知甲车间的工人数与乙车间相同,丙车间的工人数是丁车间的倍且比甲车间工人数多,甲车间与丁车间的工人数之和不少于人且不超过人;甲车间与丁车间每个工人的日生产量相同,乙车间每个工人的日生产量为丙车间每个工人日生产量的倍,甲车间与丙车间每个工人的日生产量之和为件,且甲车间每个工人的日生产量不低于丙车间每个工人日生产量的且不超过件;甲车间、丙车间的日生产之和比乙车间、丁车间的日生产之和少件.则当甲、丙两车间当日生产量之和最多时,该工厂调配前往甲车间的人数为__________人.
5、正比例函数y=kx (k是常数,k≠0)的图象是一条经过______的直线,我们称它为直线y=kx.
三、解答题(5小题,每小题10分,共计50分)
1、已知一次函数,完成下列问题:
(1)求此函数图像与x轴、y轴的交点坐标;
(2)画出此函数的图像:观察图像,当时,x的取值范围是______.
2、如图,在平面直角坐标系中,点为坐标原点,直线分别交轴、轴于点、,经过点的直线交轴于点.
(1)求点的坐标;
(2)动点在射线上运动,过点作轴,垂足为点,交直线于点,设点的横坐标为.线段的长为.求关于的函数解析式,并直接写出自变量的取值范围;
(3)在(2)的条件下,当点在线段上时,连接,若,在线段上取一点.连接,使,问在轴上是否存在点,使是以为直角的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
3、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.
(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;
(2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;
(3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.
4、如图1,一次函数y=x+4的图象与x轴、y轴分别交于点A、B.
(1)则点A的坐标为_______,点B的坐标为______;
(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;
(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.
①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)
②试求线段OQ长的最小值.
5、已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.
(1)当线段PC与线段AB平行时,求点P的坐标,并求此时△POC的面积与△AOB的面积的比值.
(2)当△AOB被线段PC分成的两部分面积相等时,求线段PC所在直线的解析式;
(3)若△AOB被线段PC分成的两部分面积比为1:5时,求线段PC所在直线的解析式.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据k>0时,y随x的增大而增大,进行判断即可.
【详解】
解:∵点,都在一次函数的图象上,
∴y随x的增大而增大
故选A
【点睛】
本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记
“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.
2、D
【解析】
【分析】
根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.
【详解】
解:根据表可得y1=kx+b中y随x的增大而增大;
y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).
则当x>﹣1时,kx+b>mx+n.
故选:D.
【点睛】
本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.
3、C
【解析】
略
4、C
【解析】
【分析】
根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数的图象经过第一、二、四象限,此题得解.
【详解】
解:∵k=-2<0,b=1>0,
∴一次函数y=-2x+1的图象经过第一、二、四象限,
∴一次函数y=-2x+1的图象不经过第三象限.
故选:C.
【点睛】
本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.
5、A
【解析】
【分析】
分别把P1(-3,y1)、P2(2,y2)代入y=-2x+1,求出y1、y2的值,并比较出其大小即可.
【详解】
解:∵P1(-3,y1)、P2(2,y2)是y=-2x+1的图象上的两个点,
∴y1=6+1=7,y2=-4+1=-3,
∵7>-3,
∴y1>y2.
故选:A.
【点睛】
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
6、C
【解析】
【分析】
利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.
【详解】
解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),
∴一次函数y1=k1x与y=k2x+b的图象的交点坐标为(2,3),
∴关于x,y的二元一次方程组的解为.
故选:C.
【点睛】
本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y1=k1x+b1,y2=k2x+b2,其图象的交点坐标(x,y)中x,y的值是方程组的解.
7、C
【解析】
【分析】
一次函数过第一、二、三象限,则,根据图象结合性质可得答案.
【详解】
解:如图,函数的图象经过第一、二、三象限,
则函数的图象与轴交于正半轴,
故选C
【点睛】
本题考查的是一次函数的图象与性质,掌握“一次函数过第一、二、三象限,则”是解本题的关键.
8、D
【解析】
【分析】
根据图象依次分析判断.
【详解】
解:甲队的挖掘速度在2小时前小于乙队的挖掘速度,2小时后大于乙队的速度,故选项A不符合题意;
开挖2h时,乙队所挖的河渠的长度为30m,
甲队每小时挖=10m,故2h时,甲队所挖的河渠的长度为20m,
开挖2h时,甲、乙两队所挖的河渠的长度相差30-20=10m,故选项B不符合题意;
由图象可知,乙队2小时前后的挖掘速度发生了改变,故选项C不符合题意;
甲队开挖4h时,所挖河渠的长度为,
乙队开挖2小时后的函数解析式为,当开挖4h时,共挖40m,故选项D符合题意;
故选:D.
【点睛】
此题考查了一次函数的图象,利用图象得到所需信息,能读懂函数图象并结合所得信息进行计算是解题的关键.
9、B
【解析】
【分析】
根据题意结合图象分别求出甲减速后的速度已经乙的速度,再列方程解答即可.
【详解】
解:甲减速后的速度为:(20﹣8)÷(4﹣1)=4(km/h),乙的速度为:20÷5=4(km/h),
设甲出发x小时后与乙相遇,
根据题意得8+4(x﹣1)+4x=20,
解得x=2.
即甲出发2小时后与乙相遇.
故选:B.
【点睛】
本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.
10、A
【解析】
【分析】
根据图象得出,慢车的速度为 km/h,快车的速度为 km/h.从而得出快车和慢车对应的y与t的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.
【详解】
解:根据图象可知,慢车的速度为 km/h.
对于快车,由于往返速度大小不变,总共行驶时间是6h,
因此单程所花时间为3 h,故其速度为 km/h.
所以对于慢车,y与t的函数表达式为y=t (0≤t≤9)①.
对于快车,y与t的函数表达式为
y=,
联立①②,可解得交点横坐标为t=4.5,
联立①③,可解得交点横坐标为t=,
因此,两车先后两次相遇的间隔时间是,
故选:A.
【点睛】
本题主要考查根据函数图象求一次函数表达式,以及求两个一次函数的交点坐标.解题的关键是利用图象信息得出快车和慢车的速度,进而写出y与t的关系.
二、填空题
1、(12,0)或(-,0)
【解析】
【分析】
由一次函数解析式求出点A、B的坐标,进而求得OA、OB、AB,分点C在x轴正半轴和在x轴负半轴,利用折叠性质和勾股定理求解OC即可.
【详解】
解:当x=0时,y=4,当y=0时,x=-3,
∴A(-3,0),B(0,4),
∴OA=3,OB=4,
∴,
设点A的对应点为A1,OC=x,
当点C在x轴正半轴时,如图,
根据轴对称性质得:BA1=AB=5,OA1=5+4=9,CA1=AC=3+x,
在Rt△A1OC中,由勾股定理得:,
解得:x=12,即OC=12,
∴点C坐标为(12,0);
当点C在x轴负半轴时,如图,
根据折叠性质得:BA1=AB=5,OA1=5-4=1,CA1=AC=3-x,
在Rt△A1OC中,由勾股定理得:,
解得:,即OC= ,
∴点C的坐标为(-,0),
综上,点C的坐标为(12,0)或(-,0),
故答案为:(12,0)或(-,0).
【点睛】
本题考查一次函数与坐标轴的交点问题、折叠性质、勾股定理、坐标与图形,熟练掌握轴对称性质,利用分类讨论思想解决问题是解答的关键.
2、
【解析】
【分析】
根据直线向下平移4个单位,可得平移后的直线的表达式为,即可求解.
【详解】
解:将直线向下平移4个单位后,所得直线的表达式是.
故答案为:
【点睛】
本题主要考查了一次函数图象的平移,熟练掌握一次函数图象向上平移 个单位后得到;向下平移 个单位后得到是解题的关键.
3、 一条直线 相同 原点 (0,5) 上 5
【解析】
略
4、21
【解析】
【分析】
根据题意设甲、乙、丙、丁车间的人数分别为人,甲、乙、丙、丁车间的日生产量分别为,则根据甲车间、丙车间的日生产之和比乙车间、丁车间的日生产之和少件,转化为只含有的方程,进而根据因式分解化简得,根据不等式求得的范围,根据是整数,即可求得的值,进而求得,根据题意列出代数式,并根据一次函数的性质求得当时,取得最大值,即可求得的值,即可解决问题.
【详解】
根据题意设甲、乙、丙、丁车间的人数分别为人,甲、乙、丙、丁车间的日生产量分别为,则
,,
,
即
又
即
即
解得
是整数,即是整数
设甲、丙两车间当日生产量之和为:
则
,则当最大时,取得最大值
即
时,取得最大值
此时
故答案为:21
【点睛】
本题考查了方程组的应用,一元一次不等式的应用,一次函数的性质求最值问题,理清题中各关系量是解题的关键.
5、原点
【解析】
略
三、解答题
1、 (1);
(2)作图见解析;
【解析】
【分析】
(1)分别令,进而即可求得此函数图象与坐标轴的交点坐标;
(2)根据(1)所求得的点的坐标,画出一次函数图象即可,根据图象写出当时,自变量的取值范围即可.
(1)
令,解得,令,解得
则此函数图像与x轴的交点坐标为、与y轴的交点坐标为
(2)
过点;作直线,如图,
根据函数图象可得当时,x的取值范围是:
故答案为:
【点睛】
本题考查了画一次函数图象,一次函数与坐标轴的交点,根据函数图象求自变量的范围,掌握一次函数的图象的性质是解题的关键.
2、 (1)
(2)
(3)存在,,
【解析】
【分析】
(1)先由直线分别交轴、轴于点、,求出点、的坐标,再根据直线经过点,求出的值,得到直线的解析式,令,得到关于的一元一次方程,求出的值即为点的横坐标;
(2)由轴于点,交直线于点,且点的横坐标为,得,,再按点在轴的左侧及点在轴的右侧分别求出关于的函数解析式及相应的的取值范围即可;
(3)连接,设交轴于点,作轴于点,先证明,根据勾股定理及面积等式求出点的坐标,再证明,求出直线的解析式,令,得到关于的一元一次方程,解方程求出的值即为点的横坐标.
(1)
直线,当时,;
当时,则,
解得,
,,
直线经过点,
,
直线的解析式为,
当时,则,
解得,
(2)
轴于点,交直线于点,且点的横坐标为,
,,
如图1,点在轴的左侧,则,
∵PQ=-t+4-(2t+4)=-3t,
;
如图2,点在轴的右侧,则,
,
,
综上所述,关于的函数解析式为.
(3)
存在,
如图3,连接,交轴于点,,作轴于点,
点在线段上,且,
12×(-3t)(4-t)=152,
整理得或(不符合题意,舍去),
,,
点为的中点,
,
,
,
,
∵∠BPM+2∠ABO=90°,
,
,
,,,
∴OP=22+12=5,
,
,
,
∴(55OF)2+(5)2=OF2,
解得,
,
设直线的解析式为,则,
解得,
直线的解析式为,
由得,
,
设直线的解析式为,则,
解得,
直线的解析式为,
,
∴MR//OP,
设直线的解析式为,则,
解得,
直线的解析式为,
当时,则,
解得,
点的坐标为,.
【点睛】
此题重点考查一次函数的图象与性质、用待定系数法求函数解析式、用解方程组的方法求函数图象的交点坐标、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识与方法,综合运用以上知识是解题的关键.
3、 (1)见解析
(2)
(3)6
【解析】
【分析】
(1)作出过点E的l的垂线即可解决;
(2)设直线l交x轴于点D,则由直线解析式可求得点D、点G的坐标,从而可得OD的长.由对称性及平行可得,设点P的坐标为(a,2a-2),则可得点E的坐标,由及勾股定理可求得点的坐标;
(3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长,故只要求得CM的长即可,由A、B两点的坐标即可求得CM的长.
(1)
所作出点E的对应点E′如下图所示:
(2)
设直线l交x轴于点D
在y=2x-2中,令y=0,得x=1;令x=0,得y=-2
则点D、点G的坐标分别为(1,0)、(0,-2)
∴OD=1,OG=2
由对称性的性质得:,
∵GE∥x轴
∴
∴
∴
∴
设点P的坐标为(a,2a-2),其中a>0,则可得点E的坐标为(a,-2)
∴EG=a
∴
∴
在Rt△中,由勾股定理得:
解得:
当时,
所以点P的坐标为
(3)
分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长
∵A,B两点的坐标分别为(-2,-6),(4,6)
∴CM=4-(-2)=6
则点运动路径的长为6
故答案为:6
【点睛】
本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.
4、 (1)(-3,0);(0,4)
(2)证明见解析
(3)①∠QPO,∠BAQ;②线段OQ长的最小值为
【解析】
【分析】
(1)根据题意令x=0,y=0求一次函数与坐标轴的交点;
(2)由题意可知与∠EPA相等的角有∠QPO,∠BAQ.利用三角形内角和定理解决问题;
(3)根据题意可知如图3中,连接BQ交x轴于T.证明△APE≌△QPB(SAS),推出∠AEP=∠QBP,再证明OA=OT,推出直线BT的解析式为为:,推出点Q在直线y=﹣x+4上运动,再根据垂线段最短,即可解决问题.
(1)
解:在y=x+4中,令y=0,得0=x+4,
解得x=﹣3,
∴A(﹣3,0),
在y=x+4中,令x=0,得y=4,
∴B(0,4);
故答案为:(﹣3,0),(0,4).
(2)
证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,
∵PB=PE,
∴∠PBE=∠PEB=α,
∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),
∴∠BPE=2∠OAB.
(3)
解:①结论:∠QPO,∠BAQ
理由:如图3中,∵∠APQ=∠BPE=2∠OAB,
∵∠BPE=2∠OAB,
∴∠APQ=∠BPE.
∴∠APQ﹣∠APB=∠BPE﹣∠APB.
∴∠QPO=∠EPA.
又∵PE=PB,AP=PQ
∴∠PEB=∠PBE=∠PAQ=∠AQP.
∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.
∴与∠EPA相等的角有∠QPO,∠BAQ.
故答案为:∠QPO,∠BAQ.
②如图3中,连接BQ交x轴于T.
∵AP=PQ,PE=PB,∠APQ=∠BPE,
∴∠APE=∠QPB,
在△APE和△QPB中,,
∴△APE≌△QPB(SAS),
∴∠AEP=∠QBP,
∵∠AEP=∠EBP,
∴∠ABO=∠QBP,
∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,
∴∠BAO=∠BTO,
∴BA=BT,
∵BO⊥AT,
∴OA=OT,
∴直线BT的解析式为为:,
∴点Q在直线y=﹣x+4上运动,
∵B(0,4),T(3,0).
∴BT=5.
当OQ⊥BT时,OQ最小.
∵S△BOT=×3×4=×5×OQ.
∴OQ=.
∴线段OQ长的最小值为.
【点睛】
本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.
5、 (1)P(0,1);△POC的面积与△AOB的面积的比值为;
(2)y=﹣2x+2;
(3)线段PC所在直线的解析式为:y=4x﹣4或y=x+
【解析】
【分析】
(1)先求出A、B坐标,进而求出△ABC的面积,再利用待定系数法求得PC所在直线解析式,进而求得点P坐标和△POC的面积即可;
(2)根据三角形一边上的中线将三角形面积平分可得点P与点B重合,此时P(0,2),利用待定系数法求得PC所在直线解析式即可;
(3)分①当点P在线段AB上时和②当点P在线段OB上时两种情况,根据三角形面积公式求出点P纵坐标,进而求得点P坐标,再利用待定系数法求PC所在直线的解析式即可.
(1)
解:∵直线y=﹣x+2与x轴、y轴分别交于点A和点B,
∴A(2,0),B(0,2),
∴OA=OB=2,
∴∠OAB=∠OBA=45°,
∴.
当线段PC与线段AB平行时,可画出图形,
设PC所在直线的解析式为y=﹣x+m,
∵C(1,0),
∴﹣1+m=0,解得,m=1,
∴PC所在直线的解析式为:y=﹣x+1,
∴P(0,1);
此时,,
∴.
即P(0,1);△POC的面积与△AOB的面积的比值为;
(2)
解:由题意可知,点C是线段OA的中点,当△AOB被线段PC分成的两部分面积相等时,点P与点B重合,此时P(0,2),
设PC所在直线的解析式为:y=kx+b,
∴,解得,,
∴线段PC所在直线的解析式为:y=﹣2x+2.
(3)
解:根据题意,需要分类讨论:
①当点P在线段AB上时,如图所示,此时,
过点P作PD⊥x轴于点D,
∴,解得:,
∴AD=PD=,
∴OD=OA﹣AD=2﹣=,
∴P(,),
设线段PC所在直线的解析式:y=k1x+b1,
∴,解得,,
∴线段PC所在直线的解析式:y=4x﹣4;
②当点P在线段OB上时,如图所示,此时,
∴,解得,,
∴P(0,),
设线段PC所在直线的解析式:y=k2x+b2,
∴,解得,,
∴线段PC所在直线的解析式:y=x+;
综上可知,线段PC所在直线的解析式为:y=4x﹣4或y=x+.
【点睛】
本题考查待定系数法求一次函数的解析式、一次函数图象与坐标轴交点问题、坐标与图形、三角形的面积公式、三角形的中线性质,熟练掌握待定系数法求一次函数的解析式,利用数形结合和分类讨论思想求解是解答的关键.
相关试卷
这是一份初中第二十一章 一次函数综合与测试当堂达标检测题,共32页。试卷主要包含了已知P1等内容,欢迎下载使用。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试习题,共19页。
这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步练习题,共24页。试卷主要包含了当时,直线与直线的交点在,已知一次函数y=kx+b等内容,欢迎下载使用。