初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练
展开
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试精练,共24页。试卷主要包含了下列不能表示是的函数的是等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列函数中,y是x的一次函数的是( )A.y= B.y=﹣3x+1 C.y=2 D.y=x2+12、巴中某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为( )①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为8件;③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同.A.1个 B.2个 C.3个 D.4个3、已知点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,则y1,y2的大小关系是( )A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定4、甲、乙两地相距120千米,A车从甲地到乙地,B车从乙地到甲地,A车的速度为60千米/小时,B车的速度为90千米/小时,A,B两车同时出发.设A车的行驶时间为x(小时),两车之间的路程为y(千米),则能大致表示y与x之间函数关系的图象是( )A.B.C. D.5、某种摩托车的油箱最多可以储油10升,李师傅记录了他的摩托车加满油后,油箱中的剩余油量y(升)与摩托车行驶路程x(千米)的关系,则当0≤x≤500时,y与x的函数关系是( ).x(千米)0100150300450500y(升)1087410 A.正比例函数关系 B.一次函数关系C.二次函数关系 D.反比例函数关系6、某网店销售一款市场上畅销的护眼台灯,在销售过程中发现,这款护眼台灯销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.则y与x的函数关系式为( )A.y=﹣2x+100 B.y=﹣2x+40 C.y=﹣2x+220 D.y=﹣2x+607、如图1,在中,,点是的中点,动点从点出发沿运动到点,设点的运动路程为,的面积为,与的函数图象如图2所示,则的长为( ).A.10 B.12 C. D.8、平面直角坐标系中,点的坐标为,一次函数的图像与轴、轴分别相交于点、,若点在的内部,则的取值范围为( )A.或 B. C. D.9、下列不能表示是的函数的是( )A.05101533.544.5B.C.D.10、某工厂投入生产一种机器,每台成本y(万元/台)与生产数量x(台)之间是函数关系,函数y与自变量x的部分对应值如表:则y与x之间的解析式是( )x(单位:台)102030y(单位:万元/台)605550A.y=80- 2x B.y=40+ 2xC.y=65- D.y=60-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一次函数的图象过点(3,5)与(-4,-9),求一次函数的解析式.分析:求一次函数y=kx+b的解析式,关键是求出k,b的值.从已知条件可以列出关于k,b的二元一次方程组,并求出k,b.解:设这个一次函数的解析为:y=kx+b因为y=kx+b的图象过点(3,5)与(-4,-9),所以,解方程组得:,这个一次函数的解析式为:___2、一般地,形如y=kx+b(k≠0,k、b为常数)的函数,叫做______函数.注意:k是常数,k≠0,k可以是正数、也可以是负数;b可以取______ .3、正比例函数y=kx (k是常数,k≠0)的图象是一条经过______的直线,我们称它为直线y=kx.4、一般地,任何一个二元一次方程都可以转化为一次函数y=kx+b(k、b为常数,且k≠0)的形式,所以每个二元一次方程都对应一个_____,也对应一条直线.这条直线上每个点的坐标(x,y)都是这个二元一次方程的解.由含有未知数x和y的两个二元次一方程组成的每个二元一次方程组,都对应两个一次函数,于是也对应两条直线.从数的角度看,解这样的方程组,相当于求自变量为何值时相应的两个函数值相等,以及这个函数值是多少;从形的角度看,解这样的方程组,相当于确定两条相应直线_____的坐标.因此,我们可以用画一次函数图象的方法得到方程组的解.5、像h=0.5n,T=-2t,l=2πr这些函数解析式都是______与______的积的形式.一般地,形如y=kx(k是常数,k≠0)的函数,叫做______函数,其中k叫做______.三、解答题(5小题,每小题10分,共计50分)1、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水吨,应交水费元.(1)若,请写出与的函数关系式.(2)若,请写出与的函数关系式.(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?2、为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?3、一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t(小时),航行的路程为s(千米),s与t的函数图像如图所示.(1)甲乙两地相距 千米;(2)轮船顺水航行时航行的路程s关于所用时间t的函数关系式为 ,定义域是 ;(3)如果轮船从乙地逆水航行返回到甲地时的速度为20千米/小时,那么点M的坐标是 .4、如图,在平面直角坐标系中,直线与直线相交于点.(1)求m,b的值;(2)求的面积;(3)点P是x轴上的一点,过P作垂于x轴的直线与的交点分别为C,D,若P点的横坐标为n,当时直接写出n的取值范围.5、甲、乙两车从M地出发,沿同一路线驶向N地,甲车先出发匀速驶向N地,30分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了40km/h,结果两车同时到达N地,甲乙两车距N地的路程y(km)与乙车行驶时间x(h)(1)a= ,甲的速度是 km/h.(2)求线段AD对应的函数表达式.(3)直接写出甲出发多长时间,甲乙两车相距10km. -参考答案-一、单选题1、B【解析】【分析】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.【详解】解:∵y=不符合一次函数的形式,故不是一次函数,∴选项A不符合题意;∵形如y=kx+b(k,b为常数).∴y=﹣3x+1中,y是x的一次函数.故选项B符合题意;∵y=2是常数函数,∴选项C不符合题意;∵y=x2+1不符合一次函数的形式,故不是一次函数,∴选项D不符合题意;综上,y是x的一次函数的是选项B.故选:B.【点睛】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.2、B【解析】【分析】根据图象可知15分钟后,甲仓库内快件数量为130件,据此可得甲仓库揽收快件的速度,进而得出时,甲仓库内快件数;由图象可知45分钟,乙仓库派送快件数量为180件,可得乙仓库每分钟派送快件的数量,进而得出乙仓库快件的总数量,然后根据题意列方程即可求出两仓库快递件数相同是时间.【详解】解:由题意结合图象可知:15分钟后,甲仓库内快件数量为130件,故①说法错误;甲仓库揽收快件的速度为:(件分),所以时,甲仓库内快件数为:(件,故③说法正确;(分,即45分钟乙仓库派送快件数量为180件,所以乙仓库每分钟派送快件的数量为:(件,故②说法错误;所以乙仓库快件的总数量为:(件,设分钟后,两仓库快递件数相同,根据题意得:,解得,即时,两仓库快递件数相同,故④说法正确.所以说法正确的有③④共2个.故选:B.【点睛】本题考查了一次函数的应用,解题的关键是结合图象,理解图象中点的坐标代表的意义.3、A【解析】【分析】根据一次函数y=3x+a的一次项系数k>0时,函数值随自变量的增大而增大的性质来求解即可.【详解】解:∵一次函数y=3x+a的一次项系数为3>0,∴y随x的增大而增大,∵点(﹣1,y1),(4,y2)在一次函数y=3x+a的图象上,﹣1<4,∴y1<y2,故选:A.【点睛】本题考查了一次函数的性质,掌握,时,随的增大而增大是解题的关键.4、C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤、<x≤、<x≤2三段求出函数关系式,进而得到当x=时,y=80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=小时, B车到达甲地时间为120÷90=小时,A车到达乙地时间为120÷60=2小时,∴当0≤x≤时,y=120-60x-90x=-150x+120;当<x≤时,y=60(x-)+90(x-)=150x-120;当<x≤2是,y=60x;由函数解析式的当x=时,y=150×-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.5、B【解析】【分析】根据表格数据,描点、连线画出函数的图象,根据函数图象进行判断即可【详解】根据表格数据,描点、连线画出函数的图象如图:故y与x的函数关系是一次函数.故选B.【点睛】本题考查了画一次函数图象,掌握一次函数图象的性质是解题的关键.6、C【解析】【分析】根据单价为60元时,每星期卖出100个,每涨价1元,每星期少卖出2个,列出关系式即可.【详解】解:∵单价为60元时,每星期卖出100个.销售单价,每涨价1元,少卖出2个,∴设销售单价为x元,则涨价(x-60)元,每星期少卖出2(x-60)个.,∴y=100−2(x-60)=-2x+220,故选C.【点睛】此题主要考查了由实际问题列函数关系式,关键是正确理解题意,找出题目中的等量关系.7、D【解析】【分析】由图像可知, 当时,y与x的函关系为:y=x,当x=8时,y=8,即P与A重合时,的面积为8,据此求出CD,BC,再根据勾股定理求出AB即可P.【详解】解:如图2,当时,设y=kx,将(3,3)代入得,k=1, ,当P与A重合时,即:PC=AC=8,由图像可知,把x=8代入y=x,y=8,,,,是BC的中点, 在Rt中, 故选:D.【点睛】本题考查了动点问题的函数图象,数形结合并熟练掌握三角形的面积计算公式与勾股定理是解题的关键.8、C【解析】【分析】由求出A,B的坐标,根据点的坐标得到点在直线上,求出直线与y轴交点C的坐标,解方程组求出交点E的坐标,即可得到关于m的不等式组,解之求出答案.【详解】解:当中y=0时,得x=-9;x=0时,得y=12,∴A(-9,0),B(0,12),∵点的坐标为,当m=1时,P(3,0);当m=2时,P(6,-4),设点P所在的直线解析式为y=kx+b,将(3,0),(6,-4)代入,∴,∴点在直线上,当x=0时,y=4,∴C(0,4),,解得,∴E(-3,8),∵点在的内部,∴,∴-1<m<0,故选:C..【点睛】此题考查了一次函数与坐标轴的交点,两个一次函数图象的交点,解一元一次不等式组,确定点在直线上是解题的关键.9、B【解析】【分析】根据函数的定义(如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,我们就把x称为自变量,把y称为因变量,y是x的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.【详解】解:A、根据图表进行分析为一次函数,设函数解析式为:,将,,,分别代入解析式为:,解得:,,所以函数解析式为:,∴y是x的函数;B、从图象上看,一个x值,对应两个y值,不符合函数定义,y不是x的函数;C、D选项从图象及解析式看可得y是x的函数.故选:B.【点睛】题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.10、C【解析】略二、填空题1、y=2x-1【解析】略2、 一次 任意实数【解析】略3、原点【解析】略4、 一次函数 交点【解析】略5、 常数 自变量 正比例 比例系数【解析】略三、解答题1、 (1)(2)(3)13吨【解析】【分析】(1)当0<x≤8时,根据水费=用水量×1.5,即可求出y与x的函数关系式;(2)当x>8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y与x的函数关系式;(3)当0<x≤8时,y≤12,由此可知这个月该户用水量超过8吨,将y=23代入(2)中所求的关系式,求出x的值即可.(1)根据题意可知:当时,;(2)根据题意可知:当时,;(3)当时,,的最大值为(元,,该户当月用水超过8吨.令中,则,解得:.答:这个月该户用了13吨水.【点睛】本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.2、 (1)今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元(2)1800万【解析】【分析】(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,根据题意列出二元一次方程组,解方程组求解即可;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,列出一元一次不等式组求得的范围,进而设明年需投入W万元,根据题意列出关于的关系式,根据一次函数的性质求得最小值即可求解.(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意得:,解得:答:今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,由题意可得:1.8(1100-m)≥1.2(1+25%)m,解得:m≤600, 设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100-m)=-0.3m+1980, ∵-0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值-0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出二元一次方程组、不等式以及一次函数关系式是解题的关键.3、 (1)60(2),(3)【解析】【分析】(1)根据函数图象可知,从甲地到乙地,轮船行驶了2小时,行驶路程为60千米,由此即可得;(2)先判断出轮船顺水航行段对应的是图象中部分,再设此时关于的函数关系式为,利用待定系数法即可得;(3)根据图象可得返回时,行驶到点处所用时间,从而可得从乙地行驶到点的路程,由此即可得.(1)解:由函数图象可知,从甲地到乙地,轮船行驶了2小时,行驶路程为60千米,故答案为:60;(2)解:由题意得:轮船顺水航行段对应的是图象中部分,设此时关于的函数关系式为,将点代入得:,解得,则关于的函数关系式为,定义域为,故答案为:,;(3)解:由图象可知,返回时,行驶到点处所用时间为(小时),则从乙地到点的路程为(千米),所以点的纵坐标为,所以点的坐标为,故答案为:.【点睛】本题考查了利用待定系数法求正比例函数的解析式、从函数图象获取信息,读懂函数图象是解题关键.4、 (1)m=2,b=3(2)12(3)或【解析】【分析】(1)先根据直线l2求出m的值,再将点B(m,4)代入直线l1即可得b的值.(2)求出点A坐标,结合点B坐标,利用三角形面积公式计算即可;(3)求出点C和点D的纵坐标,再分C、D在点B左侧和右侧两种情况分别求解.(1)解:∵点B(m,4)直线l2:y=2x上,∴4=2m,∴m=2,∴点B(2,4),将点B(2,4)代入直线得:,解得b=3;(2)将y=0代入,得:x=-6,∴A(-6,0),∴OA=6,∴△AOB的面积==12;(3)令x=n,则,,当C、D在点B左侧时,则,解得:;当C、D在点B右侧时,则,解得:;综上:n的取值范围为或.【点睛】本题是一次函数综合题,考查两条直线平行、相交问题,三角形的面积,解题的关键是灵活应用待定系数法,学会利用图象,根据条件确定自变量取值范围.5、 (1)3.5小时,76;(2)线段AD对应的函数表达式为.(3)甲出发或或或小时,甲乙两车相距10km.【解析】【分析】(1)根据乙车3小时到货站,在货站装货耗时半小时,得出小时,甲提前30分钟,可求甲车行驶的时间为:0.5+4.5=5小时,然后甲车速度=千米/时即可;(2)利用待定系数法AD解析式为:,把AD两点坐标代入解析式得解方程即可;(3)分两种情况,甲出发,乙未出发76t=10,乙出发后,设乙车的速度为xkm/h,利用行程列方程3x+(x-40)×1=380解方程求出x=105km/h,再用待定系数法,列方程,CD段乙车速度为105-40=65km/h,求出CD的解析式为,列方程,结合甲先行30分根据有理数加法求出甲所用时间即可.(1)解:∵3小时到货站,在货站装货耗时半小时,∴小时,甲车行驶的时间为:0.5+4.5=5小时,甲车速度=千米/时,故答案为:3.5小时,76;(2)点A表示的路程为:76×0.5=38,设AD解析式为:,把AD两点坐标代入解析式得:,解得:,线段AD对应的函数表达式为.(3)甲出发乙未出发,∴76t=10,∴t=,乙出发后;设乙车的速度为vkm/h,3v+(v-40)×1=380解得v=105km/h,∴点B(3,315)设OB解析式为,代入坐标得:,∴OB解析式为∴,化简为:或,解得或,∵CD段乙车速度为105-40=65km/h,设CD的解析式为代入点D坐标得,,解得:,∴CD的解析式为,∴,解得:,∵甲提前出发30分钟,,,,甲出发或或或小时,甲乙两车相距10km.【点睛】本题考查待定系数法求一次函数解析式,利用函数图像获取信息,绝对值方程,一元一次方程,二元一次方程组解法,分类讨论思想的应用使问题完整解决是解题关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试随堂练习题,共34页。试卷主要包含了若一次函数等内容,欢迎下载使用。
这是一份初中数学第二十一章 一次函数综合与测试同步测试题,共31页。试卷主要包含了已知点,都在直线上,则,一次函数的图象一定经过等内容,欢迎下载使用。
这是一份冀教版第二十一章 一次函数综合与测试习题,共29页。试卷主要包含了当时,直线与直线的交点在等内容,欢迎下载使用。