冀教版八年级下册第二十一章 一次函数综合与测试课时作业
展开这是一份冀教版八年级下册第二十一章 一次函数综合与测试课时作业,共28页。试卷主要包含了已知P1,点A,若一次函数等内容,欢迎下载使用。
八年级数学下册第二十一章一次函数专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知点K为直线l:y=2x+4上一点,先将点K向下平移2个单位,再向左平移a个单位至点K1,然后再将点K1向上平移b个单位,向右平1个单位至点K2,若点K2也恰好落在直线l上,则a,b应满足的关系是( )
A.a+2b=4 B.2a﹣b=4 C.2a+b=4 D.a+b=4
2、如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )
A. B.
C. D.
3、在同一平面直角坐标系中,函数的图象与函数的图象互相平行,则下列各点在函数的图象上的点是( )
A. B. C. D.
4、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的( )
A.小豪爸爸出发后12min追上小豪 B.小李爸爸的速度为300m/min
C.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m
5、已知P1(﹣3,y1)、P2(2,y2)是y=﹣2x+1的图象上的两个点,则y1、y2的大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
6、我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(图1).图2中,分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系,下列说法错误的是( ).
A.快艇的速度比可疑船只的速度快0.3海里/分
B.5分钟时快艇和可疑船只的距离为3.5海里
C.若可疑船只一直匀速行驶,则它从海岸出发0.5小时后,快艇才出发追赶
D.当快艇出发分钟后追上可疑船只,此时离海岸海里
7、点A(3,)和点B(-2,)都在直线y=-2x+3上,则和的大小关系是( )
A. B. C. D.不能确定
8、若一次函数(,为常数,)的图象不经过第三象限,那么,应满足的条件是( )
A.且 B.且
C.且 D.且
9、一次函数,,且随的增大而减小,则其图象可能是( )
A. B.
C. D.
10、AB两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离s(km)与时间t(h)的关系如图所示,则甲出发( )小时后与乙相遇.
A.1.5 B.2 C.2.5 D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知函数和的图象交于点,则根据图象可得,二元一次方程组的解是_______.
2、在直角坐标系中,等腰直角三角形、、、、按如图所示的方式放置,其中点、、、、均在一次函数的图象上,点、、、、均在轴上.若点的坐标为,点的坐标为,则点的坐标为___.
3、如图,直线y=kx+b交坐标轴于A,B两点,则关于x的不等式kx+b<0的解集是_____.
4、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.
5、某手工作坊生产并销售某种食品,假设销售量与产量相等,如图中的线段AB、OC分别表示每天生产成本(单位:元)、收入(单位:元)与产量x(单位:千克)之间的函数关系.若该手工作坊某一天既不盈利也不亏损,则这天的产量是______千克.
三、解答题(5小题,每小题10分,共计50分)
1、国庆期间,小龚自驾游去了离家156千米的月亮湾,如图是小龚离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求小龚出发36分钟时,离家的距离;
(2)求出AB段的图象的函数解析式;
(3)若小龚离目的地还有72千米,求小龚行驶了多少小时.
2、如图,在△ABC中,∠ACB=90°,AC=BC,BC与y轴交于D点,点C的坐标为(-2,0),点A的坐标为(-6,3),求点D的坐标.
3、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:
(1)甲、乙两地之间的距离为 km;
(2)两车经过 h相遇;
(3)求慢车和快车的速度;
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.
4、如图,已知直线l1:y=kx+2与x轴相交于点A,与y轴相交于点B,且AB=;直线l2经过点(2,2)且平行于直线y=−2x.直线l2与x轴交于点C,与y轴交于点D,与直线l1交于点N.
(1)求k的值;
(2)求四边形OCNB的面积;
(3)若线段CD上有一动点P(不含端点),过P点作x轴的垂线,垂足为M.设点P的横坐标为m.若PM≤3,求m的取值范围.
5、对于平面直角坐标系xOy中的图形M和点P,给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M的和谐点.已知点A(﹣4,3),B(4,3).
(1)在点P1(﹣2,1),P2(﹣1,0),P3(5,4)中,直线AB的和谐点是 ;
(2)点P为直线y=x+1上一点,若点P为直线AB的和谐点,求点P的横坐标t的取值范围;
(3)已知点C(4,﹣3),D(﹣4,﹣3),如果直线y=x+b上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点都是矩形ABCD的和谐点,且EF>2,请直接写出b的取值范围.
-参考答案-
一、单选题
1、C
【解析】
【分析】
点K为直线l:y=2x+4上一点,设再根据平移依次写出的坐标,再把的坐标代入一次函数的解析式,整理即可得到答案.
【详解】
解: 点K为直线l:y=2x+4上一点,设
将点K向下平移2个单位,再向左平移a个单位至点K1,
将点K1向上平移b个单位,向右平1个单位至点K2,
点K2也恰好落在直线l上,
整理得:
故选C
【点睛】
本题考查的是一次函数图象上点的坐标满足函数解析式,点的平移,掌握“点的平移坐标的变化规律”是解本题的关键.
2、A
【解析】
【分析】
分三段来考虑点P沿A→D运动,的面积逐渐变大;点P沿D→C移动,的面积不变;点P沿C→B的路径移动,的面积逐渐减小,同时考虑各段的函数解析式,据此选择即可得.
【详解】
解:如图,过点B作BH⊥DA交DA的延长线于H,设BH=h,则当点P在线段AD上时,,h是定值,y是x的一次函数,
点P沿A→D运动,的面积逐渐变大,且y是x的一次函数,
点P沿D→C移动,的面积不变,
点P沿C→B的路径移动,的面积逐渐减小,同法可知y是x的一次函数,
故选:A.
【点睛】
本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律,理解题意,作出辅助线是解题关键.
3、C
【解析】
【分析】
根据题意两个函数图象互相平行可得,即可确定函数解析式,然后将选项各点代入检验即可确定哪个点在直线上.
【详解】
解:函数的图象与函数的图象互相平行,
∴,
∴,
当时,,选项A不在直线上;
当时,,选项B不在直线上;
当时,y=6-3=3,选项C在直线上;
当时,,选项D不在直线上;
故选:C.
【点睛】
题目主要考查确定一次函数的解析式及确定点是否在直线上,熟练掌握确定一次函数解析式的方法是解题关键.
4、B
【解析】
【分析】
根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.
【详解】
解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:
(5x+5×x)÷5=x(m/min),
∵公司位于家正西方500米,
∴(−10−2)×x=500+(5+2.5)x,
解得x=200,
∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×=300m/min,
爸爸到达公司时,丁丁距离商店路程为:
3500-(−12)×(300+200)=m.
综上,正确的选项为B.
故选:B.
【点睛】
本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.
5、A
【解析】
【分析】
分别把P1(-3,y1)、P2(2,y2)代入y=-2x+1,求出y1、y2的值,并比较出其大小即可.
【详解】
解:∵P1(-3,y1)、P2(2,y2)是y=-2x+1的图象上的两个点,
∴y1=6+1=7,y2=-4+1=-3,
∵7>-3,
∴y1>y2.
故选:A.
【点睛】
本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
6、C
【解析】
【分析】
根据图象分别计算两船的速度判断A正确;利用图象计算出发5分钟时的距离差判断B正确;可疑船只出发5海里后快艇追赶,计算时间判断C错误正确;设快艇出发t分钟后追上可疑船只,列方程,求解即可判断D正确.
【详解】
解:快艇的速度为,可疑船只的速度为(海里/分),
∴快艇的速度比可疑船只的速度快0.5-0.2=0.3海里/分,故A选项不符合题意;
5分钟时快艇和可疑船只的距离为海里,故B选项不符合题意;
由图象可知:可疑船只出发5海里后快艇追赶,分钟=小时,故选项C符合题意;
设快艇出发t分钟后追上可疑船只,,解得t=,
这时离海岸海里,故D选项不符合题意;
故选:C.
【点睛】
此题考查了一次函数的图象,正确理解函数图象并得到相关信息进行计算是解题的关键.
7、C
【解析】
【分析】
利用一次函数的增减性性质判定即可.
【详解】
∵直线y=-2x+3的k=-2<0,
∴y随x的增大而减小,
∵-2<3,
∴,
故选C.
【点睛】
本题考查了一次函数的增减性,熟练掌握性质是解题的关键.
8、D
【解析】
【分析】
根据一次函数图象与系数的关系解答即可.
【详解】
解:一次函数、是常数,的图象不经过第三象限,
且,
故选:D.
【点睛】
本题主要考查了一次函数图象与系数的关系,直线y=kx+b所在的位置与k、b的符号有直接的关系为:k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
9、B
【解析】
【分析】
根据一次函数的图象是随的增大而减小,可得,再由,可得,即可求解.
【详解】
解:一次函数的图象是随的增大而减小,
∴ ,
;
又,
,
一次函数的图象经过第二、三、四象限.
故选:B
【点睛】
本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
10、B
【解析】
【分析】
根据题意结合图象分别求出甲减速后的速度已经乙的速度,再列方程解答即可.
【详解】
解:甲减速后的速度为:(20﹣8)÷(4﹣1)=4(km/h),乙的速度为:20÷5=4(km/h),
设甲出发x小时后与乙相遇,
根据题意得8+4(x﹣1)+4x=20,
解得x=2.
即甲出发2小时后与乙相遇.
故选:B.
【点睛】
本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.
二、填空题
1、
【解析】
【分析】
根据两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组求解.
【详解】
解:由图像可知二元一次方程组的解是,
故答案为:
【点睛】
本题考查了一次函数与二元一次方程(组):两个一次函数图象的交点坐标满足由两个一次函数解析式所组成的方程组.
2、
【解析】
【分析】
首先,根据等腰直角三角形的性质求得点A1、A2的坐标;然后,将点A1、A2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y=x+1;最后,利用等腰直角三角形的性质推知点Bn-1的坐标,然后将其横坐标代入直线方程y=x+1求得相应的y值,从而得到点An的坐标.
【详解】
解:如图,点的坐标为,点的坐标为,
,,则.
△是等腰直角三角形,,
.
点的坐标是.
同理,在等腰直角△中,,,则.
点、均在一次函数的图象上,
,解得,,
该直线方程是.
点,的横坐标相同,都是3,
当时,,即,则,
.
同理,,
,,
当时,,
即点的坐标为,.
故答案为,.
【点睛】
本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点Bn的坐标的规律.
3、x<-2
【解析】
【分析】
根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.
【详解】
∵点A坐标为(-2,0),
∴关于x的不等式kx+b<0的解集是x<-2,
故答案为:x<-2
【点睛】
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.
4、
【解析】
【分析】
根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.
【详解】
∵直线与相交于点
∴的坐标既满足,也满足
∴是方程组的解
故答案为:
【点睛】
本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.
5、30
【解析】
【分析】
根据题意可设AB段的解析式为,OC段的解析式为,再结合图象利用待定系数法求出解析式,最后根据该手工作坊某一天既不盈利也不亏损时,即,可列出关于x的等式,解出x即可.
【详解】
根据题意可设AB段的解析式为:,且经过点A(0,240),B(60,480),
∴ ,
解得:,
∴AB段的解析式为:;
设OC段的解析式为:,且经过点C(60,720),
∴,
解得:,
∴OC段的解析式为:.
当该手工作坊某一天既不盈利也不亏损时,即,
∴,
解得:.
所以这天的产量是30千克.
故答案为:30.
【点睛】
本题考查一次函数的实际应用.掌握利用待定系数法求函数解析式是解答本题的关键.
三、解答题
1、 (1)36千米
(2)y=90x-24 (0.8≤x≤2)
(3)1.2小时
【解析】
【分析】
(1)由OA段可求得此时小龚驾车的速度,从而可求得36分钟离家的距离;
(2)用待定系数法.AB段过点A与B,把这两点的坐标代入所设函数解析式中即可求得函数解析式;
(3)由题意可得小龚离家的距离,根据(2)中求得的函数解析式的函数值,解方程即可求得x的值,从而求得小龚行驶的时间.
(1)
在OA段,小龚行驶的速度为:48÷0.8=60(千米/时),36分钟=0.6小时,则小龚出发36分钟时,离家的距离为60×0.6=36(千米);
(2)
由图象知: ,
设AB段的函数解析式为:
把A、B两点的坐标分别代入上式得:
解得:
∴AB段的函数解析式为(0.8≤x≤2)
(3)
由图象知,当小龚离目的地还有72千米时,他已行驶了156−72=84(千米)
所以在中,当y=84时,即,得
即小龚离目的地还有72千米,小龚行驶了1.2小时.
【点睛】
本题考查了一次函数(正比例函数)的图象与性质,待定系数法求函数解析式,已知函数值求自变量的值等知识,数形结合是本题的关键.
2、(0,)
【解析】
【分析】
过A和B分别作AF⊥x轴于F,BE⊥x轴于E,可证得△AFC≌△CEB,从而得到FC=BE,AF=CE,再由点C的坐标为(-2,0),点A的坐标为(-6,3),可得OC=2,AF=CE=3,OF=6,从而得到B点的坐标是(1,4),再求出直线BC的解析式,即可求解.
【详解】
解:过A和B分别作AF⊥x轴于F,BE⊥x轴于E,
∵∠ACB=90°,
∴∠ACF+∠BCE=90°,
∵AF⊥x轴,BE⊥x轴,
∴ ,
∴∠ACF+∠CAF=90°,
∴∠CAF=∠BCE,
在△AFC和△CEB中,
,
∴△AFC≌△CEB(AAS),
∴FC=BE,AF=CE,
∵点C的坐标为(-2,0),点A的坐标为(-6,3),
∴OC=2,AF=CE=3,OF=6,
∴CF=OF-OC=4,OE=CE-OC=2-1=1,
∴BE=4,
∴则B点的坐标是(1,4),
设直线BC的解析式为:y=kx+b,
k+b=4-2k+b=0 ,解得: ,
∴直线BC的解析式为:y=x+ ,
令 ,则 ,
∴ D(0,).
【点睛】
本题主要考查了求一次函数解析式,全等三角形的判定和性质,根据题意得到△AFC≌△CEB是解题的关键.
3、 (1)900
(2)4
(3)快车的速度为150km/h,慢车的速度为75km/h
(4)y=225x﹣900,自变量x的取值范围是4≤x≤6
【解析】
【分析】
(1)由函数图象可以直接求出甲乙两地之间的距离;
(2)由函数图象的数据就即可得出;
(3)由函数图象的数据,根据速度=路程÷时间就可以得出慢车的速度,由相遇问题求出速度和就可以求出快车的速度进而得出结论;
(4)由快车的速度求出快车走完全程的时间就可以求出点C的横坐标,由两车的距离=速度和×时间就可以求出C点的纵坐标,由待定系数法就可以求出结论.
(1)
根据图象,得
甲、乙两地之间的距为900km.
故答案为:900;
(2)
由函数图象,当慢车行驶4h时,慢车和快车相遇.
故答案为:4;
(3)
由题意,得
快车与慢车的速度和为:900÷4=225(km/h),
慢车的速度为:900÷12=75(km/h),
快车的速度为:225﹣75=150 (km/h).
答:快车的速度为150km/h,慢车的速度为75km/h;
(4)
由题意,得快车走完全程的时间按为:900÷150=6(h),
6h时两车之间的距离为:225×(6﹣4)=450km.
则C(6,450).
设线段BC的解析式为y=kx+b,由题意,得
,
解得:k=225b=900,
则y=225x﹣900,自变量x的取值范围是4≤x≤6.
【点睛】
本题考查了一次函数的应用,根据函数图像获取信息是解题的关键.
4、 (1)k=2;
(2)7;
(3)≤m≤3
【解析】
【分析】
(1)利用勾股定理求得B (-1,0),再利用待定系数法即可求解;
(2)先求得直线l2的解析式,分别求得D、C、N的坐标,再利用四边形OCNB的面积=S△ODC- S△NBD求解即可;
(3)先求得点P的纵坐标,根据题意列不等式组求解即可.
(1)
解:令x=0,则y=2;
∴B (0,2),
∴OB=2,
∵AB=;
∴OA=1,
∴A (-1,0),
把B (-1,0)代入y=kx+2得:0=-k+2,
∴k=2;
(2)
解:∵直线l2平行于直线y=−2x.
∴设直线l2的解析式为y=−2x+b.
把(2,2)代入得2=−22+b,
解得:b=6,
∴直线l2的解析式为.
令x=0,则y=6,则D (0,6);令y=0,则x=3,则C (3,0),
由(1)得直线l1的解析式为.
解方程组得:,
∴N (1,4),
四边形OCNB的面积=S△ODC- S△NBD
=
=7;
(3)
解:∵点P的横坐标为m,
∴点P的纵坐标为,
∴PM=,
∵PM≤3,且点P在线段CD上,
∴≤3,且m≤3.
解得:≤m≤3.
【点睛】
本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.
5、 (1)P1,P3
(2)0≤t≤4
(3)3≤b<5或﹣5<b≤﹣3
【解析】
【分析】
(1)作出直线AB图象,根据到直线的距离即可得出结论;
(2)设出点P的坐标,根据和谐点的定义找出临界值即可求出t的取值范围;
(3)根据图象找出临界值,再根据对称性写全取值范围即可.
(1)
解:作AB图象如图,
P2到AB的距离为3不符合和谐点条件,
P1、P3点到直线AB的距离在0~2之间,符合和谐点的条件,
故直线AB的和谐点为P1,P3;
故答案为:P1,P3;
(2)
解:∵点P为直线y=x+1上一点,
∴设P点坐标为(t,t+1),
寻找直线上的点,使该点到AB垂线段的距离为2,
∴|t+1-3|=2,
解得t=0或t'=4,
∴0≤t≤4;
(3)
解:如图当b=5时,图中线段EF上的点都是矩形ABCD的和谐点,且EF=2,
当b=3时,线段E'F'上的点都是矩形ABCD的和谐点,E'F'>2,
∴3≤b<5,
由对称性同法可知﹣5<b≤﹣3也满足条件,
故3≤b<5或﹣5<b≤﹣3.
.
【点睛】
本题主要考查一次函数的知识,弄清新定义是解题的关键.
相关试卷
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试当堂达标检测题,共30页。试卷主要包含了已知一次函数y=kx+b等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试复习练习题,共29页。试卷主要包含了一次函数的大致图象是等内容,欢迎下载使用。
这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试巩固练习,共21页。试卷主要包含了下列不能表示是的函数的是,点A等内容,欢迎下载使用。

