冀教版八年级下册第二十一章 一次函数综合与测试巩固练习
展开八年级数学下册第二十一章一次函数综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知一次函数,其中y的值随x值的增大而减小,若点A在该函数图象上,则点A的坐标可能是( )
A. B. C. D.
2、巴中某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为( )
①15分钟后,甲仓库内快件数量为180件;
②乙仓库每分钟派送快件数量为8件;
③8:00时,甲仓库内快件数为400件;
④7:20时,两仓库快递件数相同.
A.1个 B.2个 C.3个 D.4个
3、无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
4、下列问题中,两个变量成正比例的是( )
A.圆的面积S与它的半径r
B.三角形面积一定时,某一边a和该边上的高h
C.正方形的周长C与它的边长a
D.周长不变的长方形的长a与宽b
5、当时,直线与直线的交点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6、若点,都在一次函数的图象上,则与的大小关系是( )
A. B. C. D.
7、如图,直线y=kx+b与x轴的交点的坐标是(﹣3,0),那么关于x的不等式kx+b>0的解集是( )
A.x>﹣3 B.x<﹣3 C.x>0 D.x<0
8、一次函数的图象一定经过( )
A.第一、二、三象限 B.第一、三、四象限
C.第二、三、四象限 D.第一、二、四象限
9、点A(3,)和点B(-2,)都在直线y=-2x+3上,则和的大小关系是( )
A. B. C. D.不能确定
10、我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(图1).图2中,分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系,下列说法错误的是( ).
A.快艇的速度比可疑船只的速度快0.3海里/分
B.5分钟时快艇和可疑船只的距离为3.5海里
C.若可疑船只一直匀速行驶,则它从海岸出发0.5小时后,快艇才出发追赶
D.当快艇出发分钟后追上可疑船只,此时离海岸海里
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、观察图象可知:
当k>0时,直线y=kx+b从左向右______;
当k<0时,直线y=kx+b从左向右______.
由此可知,一次函数y=kx+b(k,b是常数,k≠0) 具有如下性质:
当k>0时,y随x的增大而______;当k<0时,y随x的增大而______.
2、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为_________.
3、如图,将正方形置于平面直角坐标系中,其中,,边在轴上,直线与正方形的边有两个交点、,当时,的取值范围是__.
4、一般地,形如y=kx+b(k≠0,k、b为常数)的函数,叫做______函数.注意:k是常数,k≠0,k可以是正数、也可以是负数;b可以取______ .
5、如图,直线l是一次函数y=kx+b的图象,填空:
(1)b=______,k=______;
(2)当x=30时,y=______;
(3)当y=30时,x=______.
三、解答题(5小题,每小题10分,共计50分)
1、已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.
(1)当线段PC与线段AB平行时,求点P的坐标,并求此时△POC的面积与△AOB的面积的比值.
(2)当△AOB被线段PC分成的两部分面积相等时,求线段PC所在直线的解析式;
(3)若△AOB被线段PC分成的两部分面积比为1:5时,求线段PC所在直线的解析式.
2、甲、乙两车从M地出发,沿同一路线驶向N地,甲车先出发匀速驶向N地,30分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了40km/h,结果两车同时到达N地,甲乙两车距N地的路程y(km)与乙车行驶时间x(h)
(1)a= ,甲的速度是 km/h.
(2)求线段AD对应的函数表达式.
(3)直接写出甲出发多长时间,甲乙两车相距10km.
3、为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A,B两贫困村的计划.现决定从某地运送168箱小鸡到A,B两村养殖,若用大、小货车共18辆,则恰好能一次性运完这批小鸡,已知这两种大、小货车的载货能力分别为10箱/辆和8箱/辆,其运往A、B两村的运费如下表:
目的地车型
A村(元/辆)
B村(元/辆)
大货车
80
90
小货车
40
60
(1)试求这18辆车中大、小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往4村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数表达式,并直接写出自变量取值范围;
(3)在(2)的条件下,若运往A村的小鸡不少于96箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
4、为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表:
普通板栗(件)
精品板栗(件)
总金额(元)
甲购买情况
2
3
350
乙购买情况
4
1
300
(1)求普通板栗和精品板栗的单价分别是多少元.
(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a件(),则4000件板栗的销售总利润为w元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?
5、直线,与直线相交于点.
(1)求直线的解析式;
(2)横、纵坐标都是整数的点叫做整点.记直线与直线和轴围成的区域内(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内的整点恰好为2个,结合函数图象,求的取值范围.
-参考答案-
一、单选题
1、D
【解析】
【分析】
先判断 再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.
【详解】
解: 一次函数,其中y的值随x值的增大而减小,
当时,则 解得,故A不符合题意,
当时,则 解得 故B不符合题意;
当时,则 解得 故C不符合题意;
当时,则 解得 故D符合题意;
故选D
【点睛】
本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.
2、B
【解析】
【分析】
根据图象可知15分钟后,甲仓库内快件数量为130件,据此可得甲仓库揽收快件的速度,进而得出时,甲仓库内快件数;由图象可知45分钟,乙仓库派送快件数量为180件,可得乙仓库每分钟派送快件的数量,进而得出乙仓库快件的总数量,然后根据题意列方程即可求出两仓库快递件数相同是时间.
【详解】
解:由题意结合图象可知:
15分钟后,甲仓库内快件数量为130件,故①说法错误;
甲仓库揽收快件的速度为:(件分),
所以时,甲仓库内快件数为:(件,故③说法正确;
(分,
即45分钟乙仓库派送快件数量为180件,
所以乙仓库每分钟派送快件的数量为:(件,故②说法错误;
所以乙仓库快件的总数量为:(件,
设分钟后,两仓库快递件数相同,根据题意得:
,
解得,
即时,两仓库快递件数相同,故④说法正确.
所以说法正确的有③④共2个.
故选:B.
【点睛】
本题考查了一次函数的应用,解题的关键是结合图象,理解图象中点的坐标代表的意义.
3、C
【解析】
【分析】
通过一次函数中k和b的符号决定了直线经过的象限来解决问题.
【详解】
解:因为y=-x+4中,
k=-1<0,b=4>0,
∴直线y=-x+4经过第一、二、四象限,
所以无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在第三象限.
故选:C.
【点睛】
本题考查了一次函数中k和b的符号,k>0,直线经过第一、三象限;k<0,直线经过第二、四象限.
4、C
【解析】
【分析】
分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.
【详解】
解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意;
所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意;
所以正方形的周长C与它的边长a成正比例,故C符合题意;
所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;
故选C
【点睛】
本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.
5、B
【解析】
【分析】
根据一次函数解析式中的值,判断函数的图象所在象限,即可得出结论.
【详解】
解:一次函数中,,
∴函数图象经过一二四象限
∵在一次函数中,,
∴直线经过一二三象限
函数图象如图
∴直线与的交点在第二象限
故选:.
【点睛】
本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.
6、A
【解析】
【分析】
根据k>0时,y随x的增大而增大,进行判断即可.
【详解】
解:∵点,都在一次函数的图象上,
∴y随x的增大而增大
故选A
【点睛】
本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记
“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.
7、A
【解析】
【分析】
根据图象直接解答即可.
【详解】
∵直线y=kx+b与x轴交点坐标为(﹣3,0),
∴由图象可知,当x>﹣3时,y>0,
∴不等式kx+b>0的解集是x>﹣3.
故选:A.
【点睛】
此题考查了一次函数图象与不等式的关系,不等式的解集即为一次函数的函数值大于零、等于零或小于零,正确理解二者之间的关系是解题的关键.
8、C
【解析】
【分析】
k<0,函数一定经过第二,四象限,b<0,直线与y轴交于负半轴,所以函数图象过第三象限.
【详解】
解:∵k=-2<0,b=-3<0,
∴函数的图象经过第二、三、四象限,
故选:C.
【点睛】
本题考查了一次函数的性质,k>0,函数一定经过第一,三象限,k<0,函数一定经过第二,四象限,再根据直线与y轴的交点即可得出函数所过的象限,这是解题的关键.
9、C
【解析】
【分析】
利用一次函数的增减性性质判定即可.
【详解】
∵直线y=-2x+3的k=-2<0,
∴y随x的增大而减小,
∵-2<3,
∴,
故选C.
【点睛】
本题考查了一次函数的增减性,熟练掌握性质是解题的关键.
10、C
【解析】
【分析】
根据图象分别计算两船的速度判断A正确;利用图象计算出发5分钟时的距离差判断B正确;可疑船只出发5海里后快艇追赶,计算时间判断C错误正确;设快艇出发t分钟后追上可疑船只,列方程,求解即可判断D正确.
【详解】
解:快艇的速度为,可疑船只的速度为(海里/分),
∴快艇的速度比可疑船只的速度快0.5-0.2=0.3海里/分,故A选项不符合题意;
5分钟时快艇和可疑船只的距离为海里,故B选项不符合题意;
由图象可知:可疑船只出发5海里后快艇追赶,分钟=小时,故选项C符合题意;
设快艇出发t分钟后追上可疑船只,,解得t=,
这时离海岸海里,故D选项不符合题意;
故选:C.
【点睛】
此题考查了一次函数的图象,正确理解函数图象并得到相关信息进行计算是解题的关键.
二、填空题
1、 上升 下降 增大 减小
【解析】
略
2、3或1
【解析】
【分析】
分两种情况:①当点F在DC之间时,作出辅助线,求出点F的坐标即可求出k的值;②当点F与点C重合时求出点F的坐标即可求出k的值.
【详解】
解:①如图,作AG⊥EF交EF于点G,连接AE,
∵AF平分∠DFE,
∴DF=AG=2
在RT△ADF和RT△AGF中,
∴RT△ADF≌RT△AGF
∴DF=FG
∵点E是BC边的中点,
∴BE=CE=1
∴AE=
∴
∴ 在RT△FCE中,EF2=FC2+CE2,即(DF+1)2=(2-DF)2+1,
解得,
∴点,
把点F的坐标代入y=kx得:2=,解得k=3;
②当点F与点C重合时,
∵四边形ABCD是正方形,
∴AF平分∠DFE,
∴F(2,2),
把点F的坐标代入y=kx得:2=2k,解得k=1.
故答案为:1或3.
【点睛】
本题主要考查了一次函数综合题,涉及角平分线的性质,三角形全等的判定及性质,正方形的性质理,及勾股定解题的关键是分两种情况求出k.
3、或且
【解析】
【分析】
设BC与y轴交于点M,根据题意可得E点不在AD边上,即,分两种情况进行讨论:①如果,那么点E在AB边或线段BM上;②如果,那么点E在CD边或线段CM上;对两种情况的临界情况进行分析即可得出结果.
【详解】
解:如图,设BC与y轴交于点M,
,,,
∴E点不在AD边上,
;
①如果,那么点E在AB边或线段BM上,
当点E在AB边且时,
由勾股定理得,,
,
,,
当直线经过点,时,.
,
,
当点E在线段BM上时,,
,符合题意;
②如果,那么点E在CD边或线段CM上,
当点E在CD边且时,E与D重合;
当时,由勾股定理得,,
,
,此时E与C重合,
当直线经过点时,.
当点E在线段CM上时,,
且,符合题意;
综上,当时,的取值范围是或且,
故答案为:或且.
【点睛】
题目主要考查正比例函数的综合问题,包括其性质及分类讨论思想,勾股定理解三角形等,理解题意,熟练掌握运用分类思想是解题关键.
4、 一次 任意实数
【解析】
略
5、 2 18 -42
【解析】
略
三、解答题
1、 (1)P(0,1);△POC的面积与△AOB的面积的比值为;
(2)y=﹣2x+2;
(3)线段PC所在直线的解析式为:y=4x﹣4或y=x+
【解析】
【分析】
(1)先求出A、B坐标,进而求出△ABC的面积,再利用待定系数法求得PC所在直线解析式,进而求得点P坐标和△POC的面积即可;
(2)根据三角形一边上的中线将三角形面积平分可得点P与点B重合,此时P(0,2),利用待定系数法求得PC所在直线解析式即可;
(3)分①当点P在线段AB上时和②当点P在线段OB上时两种情况,根据三角形面积公式求出点P纵坐标,进而求得点P坐标,再利用待定系数法求PC所在直线的解析式即可.
(1)
解:∵直线y=﹣x+2与x轴、y轴分别交于点A和点B,
∴A(2,0),B(0,2),
∴OA=OB=2,
∴∠OAB=∠OBA=45°,
∴.
当线段PC与线段AB平行时,可画出图形,
设PC所在直线的解析式为y=﹣x+m,
∵C(1,0),
∴﹣1+m=0,解得,m=1,
∴PC所在直线的解析式为:y=﹣x+1,
∴P(0,1);
此时,,
∴.
即P(0,1);△POC的面积与△AOB的面积的比值为;
(2)
解:由题意可知,点C是线段OA的中点,当△AOB被线段PC分成的两部分面积相等时,点P与点B重合,此时P(0,2),
设PC所在直线的解析式为:y=kx+b,
∴,解得,,
∴线段PC所在直线的解析式为:y=﹣2x+2.
(3)
解:根据题意,需要分类讨论:
①当点P在线段AB上时,如图所示,此时,
过点P作PD⊥x轴于点D,
∴,解得:,
∴AD=PD=,
∴OD=OA﹣AD=2﹣=,
∴P(,),
设线段PC所在直线的解析式:y=k1x+b1,
∴,解得,,
∴线段PC所在直线的解析式:y=4x﹣4;
②当点P在线段OB上时,如图所示,此时,
∴,解得,,
∴P(0,),
设线段PC所在直线的解析式:y=k2x+b2,
∴,解得,,
∴线段PC所在直线的解析式:y=x+;
综上可知,线段PC所在直线的解析式为:y=4x﹣4或y=x+.
【点睛】
本题考查待定系数法求一次函数的解析式、一次函数图象与坐标轴交点问题、坐标与图形、三角形的面积公式、三角形的中线性质,熟练掌握待定系数法求一次函数的解析式,利用数形结合和分类讨论思想求解是解答的关键.
2、 (1)3.5小时,76;
(2)线段AD对应的函数表达式为.
(3)甲出发或或或小时,甲乙两车相距10km.
【解析】
【分析】
(1)根据乙车3小时到货站,在货站装货耗时半小时,得出小时,甲提前30分钟,可求甲车行驶的时间为:0.5+4.5=5小时,然后甲车速度=千米/时即可;
(2)利用待定系数法AD解析式为:,把AD两点坐标代入解析式得b=38380=4.5k+b解方程即可;
(3)分两种情况,甲出发,乙未出发76t=10,乙出发后,设乙车的速度为xkm/h,利用行程列方程3x+(x-40)×1=380解方程求出x=105km/h,再用待定系数法,列方程,CD段乙车速度为105-40=65km/h,求出CD的解析式为,列方程,结合甲先行30分根据有理数加法求出甲所用时间即可.
(1)
解:∵3小时到货站,在货站装货耗时半小时,
∴小时,
甲车行驶的时间为:0.5+4.5=5小时,
甲车速度=千米/时,
故答案为:3.5小时,76;
(2)
点A表示的路程为:76×0.5=38,
设AD解析式为:,把AD两点坐标代入解析式得:
b=38380=4.5k+b,
解得:b=38k=76,
线段AD对应的函数表达式为.
(3)
甲出发乙未出发,
∴76t=10,
∴t=,
乙出发后;
设乙车的速度为vkm/h,
3v+(v-40)×1=380
解得v=105km/h,
∴点B(3,315)
设OB解析式为y=αx,代入坐标得:,
∴OB解析式为
∴,
化简为:或,
解得或,
∵CD段乙车速度为105-40=65km/h,
设CD的解析式为代入点D坐标得,
,
解得:,
∴CD的解析式为,
∴,
解得:,
∵甲提前出发30分钟,
,,,
甲出发或或或小时,甲乙两车相距10km.
【点睛】
本题考查待定系数法求一次函数解析式,利用函数图像获取信息,绝对值方程,一元一次方程,二元一次方程组解法,分类讨论思想的应用使问题完整解决是解题关键.
3、 (1)大货车用12辆,小货车用6辆
(2)(4≤x≤12,且x为整数)
(3)8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元
【解析】
【分析】
(1)设大货车用a辆,小货车用b辆,根据大、小两种货车共18辆,运输168箱小鸡,列方程组求解;
(2)设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
(1)
设大货车用a辆,小货车用b辆,根据题意得:
解得:.
∴大货车用12辆,小货车用6辆.
(2)
设前往A村的大货车为x辆,则前往B村的大货车为(12- x)辆,前往A村的小货车为(10- x)辆,前往B村的小货车为[6-(10-x)]辆,
y=80x+90(12-x)+40(10-x)+60[6-(10-x)]=10x+1240.
4≤x≤12,且x为整数.
(4≤x≤12,且x为整数)
(3)
由题意得:10x+8(10-x)≥96,解得:x≥8,
又∵4≤x≤12,
∴8≤x≤12且为整数,
∵y=10x+1240,k=10>0,y随x的增大而增大,
∴当x=8时,y最小,
最小值为y=10×8+1240=1320(元).
答:使总运费最少的调配方案是:8辆大货车、2辆小货车前往A村;4辆大货车、4辆小货车前往B村.最少运费为1320元.
【点睛】
本题考查了二元一次方程组的应用,一次函数的应用,一元一次不等式组的应用,理解题意列出方程组、关系式、不等式是解题的关键.
4、 (1)普通板栗的单价为55元,精品板栗的单价为80元;
(2)普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
【解析】
【分析】
(1)设普通板栗的单价为x元,精品板栗的单价为y元,根据表格列出二元一次方程组,求解即可得;
(2)加工普通板栗a件,则加工精品板栗(4000-a)件,根据题意可得利润的函数关系式,根据一次函数的性质及自变量的取值范围可得当时,所获总利润w最多,代入求解即可得.
(1)
解:设普通板栗的单价为x元,精品板栗的单价为y元,由题意得:
,
解得x=55y=80,
答:普通板栗的单价为55元,精品板栗的单价为80元;
(2)
解:加工普通板栗a件,则加工精品板栗(4000-a)件,
由题意得:,
∵,1000≤a≤3000,
∴当时,所获总利润w最多,
w=-5×1000+80000=75000,
∴,
答:普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.
【点睛】
题目主要考查二元一次方程组的应用及一次函数的最大利润问题,理解题意,列出方程及函数解析式是解题关键.
5、 (1)直线为;
(2)①当时,整点个数为1个,为;②的取值范围为或
【解析】
【分析】
(1)根据待定系数法求得即可;
(2)①当k=1时代入点A坐标即可求出直线解析式,进而分析出整点个数;
②当k<0时分别以(1,2),(2,1);(1,2),(3,1)为边界点代入确定k的值;当k>0时分别以(1,2),(−1,1);(1,2),(−2,1)为边界点代入确定k的值,根据图形即可求得k的取值范围.
(1)
解:直线过点.
,
直线为.
(2)
解:①当时,,把代入得,
解得:,
,
如图1,
区域内的整点个数为1个,为.
②如图2,若,
当直线过,时,.
当直线过,时,.
,
如图3,若,
当直线过,时,.
当直线过,时,.
.
综上,若区域内的整点恰好为2个,的取值范围为或.
【点睛】
此题主要考查待定系数法求一次函数的解析式,会运用边界点分析问题是解题的关键.
初中数学冀教版八年级下册第二十一章 一次函数综合与测试巩固练习: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试巩固练习,共25页。试卷主要包含了若一次函数的图像经过第一,若一次函数等内容,欢迎下载使用。
2020-2021学年第二十一章 一次函数综合与测试测试题: 这是一份2020-2021学年第二十一章 一次函数综合与测试测试题,共30页。
初中数学冀教版八年级下册第二十一章 一次函数综合与测试测试题: 这是一份初中数学冀教版八年级下册第二十一章 一次函数综合与测试测试题,共29页。试卷主要包含了已知点等内容,欢迎下载使用。