初中数学冀教版八年级下册第二十一章 一次函数综合与测试课后练习题
展开八年级数学下册第二十一章一次函数专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知一次函数y1=kx+1和y2=x﹣2.当x<1时,y1>y2,则k的值可以是( )
A.-3 B.-1 C.2 D.4
2、无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
3、若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的( )
A. B. C. D.
4、已知是一次函数,则m的值是( )
A.-3 B.3 C.±3 D.±2
5、某商场为了增加销售额,推出“元旦销售大酬宾”活动,其活动内容为:“凡一月份在该商场一次性购物超过100元以上者,超过100元的部分按9折优惠.”在大酬宾活动中,小王到该商场为单位购买单价为60元的办公用品x件(x>2),则应付货款y(元)与商品件数x的函数关系式( )
A.y=54x(x>2) B.y=54x+10(x>2)
C.y=54x-90(x>2) D.y=54x+100(x>2)
6、如图所示,直线分别与轴、轴交于点、,以线段为边,在第二象限内作等腰直角,,则过、两点直线的解析式为( )
A. B. C. D.
7、如图,一次函数y=f(x)的图像经过点(2,0),如果y>0,那么对应的x的取值范围是( )
A.x<2 B.x>2 C.x<0 D.x>0
8、如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是( )
A. B.
C. D.
9、已知正比例函数y=3x的图象上有两点M(x1,y1)、N(x2,y2),如果x1>x2,那么y1与y2的大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定
10、下列问题中,两个变量成正比例的是( )
A.圆的面积S与它的半径r
B.三角形面积一定时,某一边a和该边上的高h
C.正方形的周长C与它的边长a
D.周长不变的长方形的长a与宽b
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、直线y=2x-4与两坐标轴围成的三角形面积为___________________.
2、当光线射到x轴进行反射,如果反射的路径经过点A(0,1)和点B(3,4),则入射光线所在直线的解析式为____________.
3、已知点(−2,y1),(−1,y2),(1,y3)都在直线y=−x+b上,则y1,y2,y3的值的大小关系是______.
4、如图,直线与相交于点,则关于x,y的二元一次方程组的解为______.
5、如图,一次函数和的图象交于点,则不等式的解集是______.
三、解答题(5小题,每小题10分,共计50分)
1、一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t(小时),航行的路程为s(千米),s与t的函数图像如图所示.
(1)甲乙两地相距 千米;
(2)轮船顺水航行时航行的路程s关于所用时间t的函数关系式为 ,定义域是 ;
(3)如果轮船从乙地逆水航行返回到甲地时的速度为20千米/小时,那么点M的坐标是 .
2、已知一次函数图象与直线平行且过点.
(1)求一次函数解析式;
(2)若(1)中一次函数图象,分别与、轴交于、两点,求、两点坐标;
(3)若点在轴上,且,求点坐标.
3、已知一次函数 y=-x+2.
(1)求这个函数的图像与两条坐标轴的交点坐标;
(2)在平面直角坐标系中画出这个函数的图像;
(3)结合函数图像回答问题:
①当 x>0 时,y 的取值范围是 ;
②当 y<0 时,x 的取值范围是 .
4、某厂计划生产A,B两种产品若干件,已知两种产品的成本价和销售价如下表:
A种产品 | B种产品 | |
成本价(元/件) | 400 | 300 |
销售价(元/件) | 560 | 450 |
(1)第一次工厂用220000元资金生产了A,B两种产品共600件,求两种产品各生产多少件?
(2)第二次工厂生产时,工厂规定A种产品生产数量不得超过B种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?
5、在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).
(1)求这个一次函数的解析式;
(2)若这个一次函数的图象与x轴的交点为C,求△BOC的面积.
-参考答案-
一、单选题
1、B
【解析】
【分析】
先求出不等式的解集,结合x<1,即可得到k的取值范围,即可得到答案.
【详解】
解:根据题意,
∵y1>y2,
∴,
解得:,
∴,
∴;,
∵当x<1时,y1>y2,
∴
∴,
∴;
∴k的值可以是-1;
故选:B.
【点睛】
本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.
2、C
【解析】
【分析】
通过一次函数中k和b的符号决定了直线经过的象限来解决问题.
【详解】
解:因为y=-x+4中,
k=-1<0,b=4>0,
∴直线y=-x+4经过第一、二、四象限,
所以无论m为何实数,直线y=-x+4与y=x+2m的交点不可能在第三象限.
故选:C.
【点睛】
本题考查了一次函数中k和b的符号,k>0,直线经过第一、三象限;k<0,直线经过第二、四象限.
3、B
【解析】
【分析】
根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.
【详解】
解:∵直线y=kx+b经过一、二、四象限,
∴k<0,b>0,
∴﹣k>0,
∴直线y=bx﹣k过一、二、三象限,
∴选项B中图象符合题意.
故选:B
【点睛】
本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.
4、A
【解析】
略
5、B
【解析】
【分析】
由题意得,则销售价超过100元,超过的部分为,即可得.
【详解】
解:∵,
∴销售价超过100元,超过的部分为,
∴(且为整数),
故选B.
【点睛】
本题考查了一次函数的应用,解题的关键是理解题意,找出等量关系.
6、B
【解析】
【分析】
过作轴,可证得,从而得到,,可得到再由,,即可求解.
【详解】
解:过作轴,则,
对于直线,令,得到,即,,
令,得到,即,,
,
为等腰直角三角形,即,,
,
,
在和中,
,
,
,,即,
,
设直线的解析式为,
,
,
解得 .
过、两点的直线对应的函数表达式是.
故选:B
【点睛】
本题主要考查了求一次函数解析式,一次函数的图象和性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.
7、A
【解析】
【分析】
y>0即是图象在x轴上方,找出这部分图象上点对应的横坐标范围即可.
【详解】
解:∵一次函数y=f(x)的图象经过点(2,0),
∴如果y>0,则x<2,
故选:A.
【点睛】
本题考查一次函数的图象,数形结合是解题的关键.
8、A
【解析】
【分析】
分三段来考虑点P沿A→D运动,的面积逐渐变大;点P沿D→C移动,的面积不变;点P沿C→B的路径移动,的面积逐渐减小,同时考虑各段的函数解析式,据此选择即可得.
【详解】
解:如图,过点B作BH⊥DA交DA的延长线于H,设BH=h,则当点P在线段AD上时,,h是定值,y是x的一次函数,
点P沿A→D运动,的面积逐渐变大,且y是x的一次函数,
点P沿D→C移动,的面积不变,
点P沿C→B的路径移动,的面积逐渐减小,同法可知y是x的一次函数,
故选:A.
【点睛】
本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律,理解题意,作出辅助线是解题关键.
9、A
【解析】
【分析】
先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可得出结论.
【详解】
∵正比例函数y=3x中,k=3>0,
∴y随x的增大而增大,
∵x1>x2,
∴y1>y2.
故选:A.
【点睛】
本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x的系数的关系是解题的关键.
10、C
【解析】
【分析】
分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.
【详解】
解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意;
所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意;
所以正方形的周长C与它的边长a成正比例,故C符合题意;
所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;
故选C
【点睛】
本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.
二、填空题
1、
【解析】
【分析】
画出一次函数的图象,再求解一次函数与坐标轴的交点的坐标,再利用三角形的面积公式进行计算即可.
【详解】
解:如图,令 则
令 则 解得
故答案为:4
【点睛】
本题考查的是一次函数与坐标轴的交点坐标,一次函数与坐标轴围成的三角形的面积,利用数形结合的方法解题是解本题的关键.
2、
【解析】
【分析】
根据题意得:入射光线所在直线和反射光线所在直线关于 轴对称,可得入射光线所在直线经过点A(0,-1)和点B(3,-4),即可求解.
【详解】
解:根据题意得:入射光线所在直线和反射光线所在直线关于 轴对称,
∵反射的路径经过点A(0,1)和点B(3,4),
∴入射光线所在直线经过点A(0,-1)和点B(3,-4),
设入射光线所在直线的解析式为 ,
根据题意得: ,解得: ,
∴入射光线所在直线的解析式为 .
故答案为:
【点睛】
本题主要考查了求一次函数解析式,根据题意得到入射光线所在直线和反射光线所在直线关于 轴对称是解题的关键.
3、
【解析】
【分析】
先根据直线y=-x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.
【详解】
解:∵直线y=-x+b,k=-<0,
∴y随x的增大而减小,
又∵-2<-1<1,
∴y1>y2>y3.
故答案为:y1>y2>y3.
【点睛】
本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
4、
【解析】
【分析】
根据两条直线相交与二元一次方程组的关系即可求得二元一次方程组的解.
【详解】
∵直线与相交于点
∴的坐标既满足,也满足
∴是方程组的解
故答案为:
【点睛】
本题考查了两条直线相交与二元一次方程组的关系,理解这个关系是关键.
5、x≥1
【解析】
【分析】
结合图象,写出直线y=mx+n在直线y=kx+b下方所对应的自变量的范围即可.
【详解】
解:∵函数y=mx+n的图象与y=kx+b的图象交于点P(1,2),
∴当x≥1时,kx+b≥mx+n,
∴不等式的解集为x≥1.
故答案为:x≥1.
【点睛】
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
三、解答题
1、 (1)60
(2),
(3)
【解析】
【分析】
(1)根据函数图象可知,从甲地到乙地,轮船行驶了2小时,行驶路程为60千米,由此即可得;
(2)先判断出轮船顺水航行段对应的是图象中部分,再设此时关于的函数关系式为,利用待定系数法即可得;
(3)根据图象可得返回时,行驶到点处所用时间,从而可得从乙地行驶到点的路程,由此即可得.
(1)
解:由函数图象可知,从甲地到乙地,轮船行驶了2小时,行驶路程为60千米,
故答案为:60;
(2)
解:由题意得:轮船顺水航行段对应的是图象中部分,
设此时关于的函数关系式为,
将点代入得:,解得,
则关于的函数关系式为,定义域为,
故答案为:,;
(3)
解:由图象可知,返回时,行驶到点处所用时间为(小时),
则从乙地到点的路程为(千米),
所以点的纵坐标为,
所以点的坐标为,
故答案为:.
【点睛】
本题考查了利用待定系数法求正比例函数的解析式、从函数图象获取信息,读懂函数图象是解题关键.
2、 (1)
(2),
(3)或
【解析】
【分析】
(1)由一次函数图象平移的性质得到k=2,再将点代入求出解析式;
(2)分别求出y=0及x=0时的对应值,即可得到A、两点坐标;
(3)由结合三角形的面积公式得到AP=2AO,即可得到点P坐标.
(1)
解:设一次函数的解析式为,
一次函数图象与直线平行,
,
过点,
∴,
,
一次函数解析式为;
(2)
解:把代入得,,
,
,
把x=0代入得,,
;
(3)
解:∵,,
AP=2AO=2,
-1-2=-3,-1+2=1,
或.
【点睛】
此题考查了一次函数平移的性质,一次函数图象与坐标轴的交点坐标,一次函数与图形面积问题,正确掌握一次函数的综合知识是解题的关键.
3、 (1)这个函数的图像与坐标轴的交点为(0,2),(2,0);
(2)见解析
(3)①y<2;②x>2
【解析】
【分析】
(1)令x=0,求函数与y轴的交点,令y=0,求函数与x轴的交点;
(2)两点法画出函数图象;
(3)通过观察函数图象求解即可.
(1)
解:令x=0,则y=2,
令y=0,则x=2,
∴这个函数的图像与坐标轴的交点为(0,2),(2,0);
(2)
解:这个函数的图像如图所示:
,
(3)
解:①观察图像可知:当x>0时,y<2,
故答案为:y<2;
②观察图像可知:当y<0时,x>2,
故答案为:x>2.
【点睛】
本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,数形结合解题是关键.
4、 (1)A种产品生产400件,B种产品生产200件
(2)A种产品生产1000件时,利润最大为460000元
【解析】
【分析】
(1)设A种产品生产x件,则B种产品生产(600-x)件,根据600件产品用220000元资金,即可列方程求解;
(2)设A种产品生产x件,总利润为w元,得出利润w与A产品数量x的函数关系式,根据增减性可得,A产品生产越多,获利越大,因而x取最大值时,获利最大,据此即可求解.
(1)
解:设A种产品生产x件,则B种产品生产(600-x)件,
由题意得:,
解得:x=400,
600-x=200,
答:A种产品生产400件,B种产品生产200件.
(2)
解:设A种产品生产x件,总利润为w元,由题意得:
由,
得:,
因为10>0,w随x的增大而增大 ,所以当x=1000时,w最大=460000元.
【点睛】
本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
5、 (1)y=2x+3
(2)S△BOC=
【解析】
【分析】
(1)根据点A、B的坐标利用待定系数法即可求出一次函数的解析式;
(2)利用直线解析式求得C的坐标,然后根据三角形面积公式即可求得△BOC的面积.
(1)
解:∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).
∴,解得:,
∴这个一次函数的解析式为:y=2x+3.
(2)
解:令y=0,则2x+3=0,解得x=﹣,
∴C(﹣,0),
∵B(0,3).
∴S△BOC==.
【点睛】
本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,三角形的面积,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.
2021学年第二十一章 一次函数综合与测试测试题: 这是一份2021学年第二十一章 一次函数综合与测试测试题,共23页。试卷主要包含了巴中某快递公司每天上午7等内容,欢迎下载使用。
数学八年级下册第二十一章 一次函数综合与测试课后练习题: 这是一份数学八年级下册第二十一章 一次函数综合与测试课后练习题,共26页。试卷主要包含了下列函数中,属于正比例函数的是,已知正比例函数的图像经过点,一次函数的大致图象是,直线不经过点等内容,欢迎下载使用。
冀教版八年级下册第二十一章 一次函数综合与测试同步训练题: 这是一份冀教版八年级下册第二十一章 一次函数综合与测试同步训练题,共29页。试卷主要包含了若直线y=kx+b经过一,点A等内容,欢迎下载使用。