开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系课时练习练习题(精选含解析)

    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系课时练习练习题(精选含解析)第1页
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系课时练习练习题(精选含解析)第2页
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系课时练习练习题(精选含解析)第3页
    还剩35页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀当堂达标检测题

    展开

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀当堂达标检测题,共38页。试卷主要包含了如图,一把宽为2cm的刻度尺等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系课时练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、若正方形的边长为4,则它的外接圆的半径为( )
    A. B.4 C. D.2
    2、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是(  )

    A. B.
    C.或 D.(﹣2,0)或(﹣5,0)
    3、如图,在平面直角坐标系中,,,.则△ABC的外心坐标为( )

    A. B. C. D.
    4、已知是正六边形的外接圆,正六边形的边心距为,将图中阴影部分的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径为( )

    A.1 B. C. D.
    5、如图,中,,O是AB边上一点,与AC、BC都相切,若,,则的半径为( )

    A.1 B.2 C. D.
    6、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为( )

    A.10cm B.8cm C.6cm D.5cm
    7、如图,,是的切线,,是切点,,是上的点,若,,则的度数为( )

    A. B. C. D.
    8、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是( )
    A.12 B.14 C.16 D.18
    9、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为(  )

    A.4m2 B.12m2 C.24m2 D.24m2
    10、如图,在△ABC中,AB=AC=5,BC=8,以A为圆心作一个半径为2的圆,下列结论中正确的是(  )

    A.点B在⊙A内 B.点C在⊙A上
    C.直线BC与⊙A相切 D.直线BC与⊙A相离
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,直线AB与x轴、y轴分别相交于A、B两点,点A(-3,0),点 B(0,),圆心P的坐标为(1,0),圆P与y轴相切与点O.若将圆P沿x轴向左移动,当圆P与该直线相交时,令圆心P的横坐标为m,则m的取值范围是________.

    2、如图,、分别与相切于A、B两点,若,则的度数为________.

    3、是的内接正六边形一边,点是优弧上的一点(点不与点,重合)且,与交于点,则的度数为_______.

    4、如图,在矩形中,是边上的点,经过,,三点的与相切于点.若,,则的半径是__________.

    5、已知正三角形的边心距为,则正三角形的边长为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、【提出问题】如图①,已知直线l与⊙O相离,在⊙O上找一点M,使点M到直线l的距离最短.

    (1)小明给出下列解答,请你补全小明的解答.
    小明的解答
    过点O作ON⊥l,垂足为N,ON与⊙O的交点M即为所求,此时线段MN最短.
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴ .
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 ,
    ∴ .
    (2)【操作实践】如图②,已知直线l和直线外一点A,线段MN的长度为1.请用直尺和圆规作出满足条件的某一个⊙O,使⊙O经过点A,且⊙O上的点到直线l的距离的最小值为1.(不写作法,保留作图痕迹并用水笔加黑描粗)
    (3)【应用尝试】如图③,在Rt△ABC中,∠C=90,∠B=30,AB=8,⊙O经过点A,且⊙O上的点到直线BC的距离的最小值为2,距离最小值为2时所对应的⊙O上的点记为点P,若点P在△ABC的内部(不包括边界),则⊙O的半径r的取值范围是 .
    2、如图,在平面直角坐标系中,,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段与的“关联角”.

    (1)如图1,如果线段是的“关联线段”,那么它的“关联角”为______.
    (2)如图2,如果、、、、、.那么的“关联线段”有______(填序号,可多选).
    ①线段;②线段;③线段
    (3)如图3,如果、,线段是的“关联线段”,那么的取值范围是______.
    (4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______.
    3、如图,PA,PB是圆的切线,A,B为切点.

    (1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);
    (2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.
    4、数学课上老师提出问题:“在矩形中,,,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.
    小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形.请你根据小明所画的图形解决下列问题:

    (1)如图1,当与相切于点时,求的长;
    (2)如图2,当与相切时,
    ①求的长;
    ②若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为______.
    5、如图,⊙O是ABC的外接圆,∠ABC=45°,OCAD,AD交BC的延长线于D,AB交OC于E.

    (1)求证:AD是⊙O的切线;
    (2)若AE=,CE=2,求⊙O的半径和线段BC的长.

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据圆内接正多边形的性质可得正方形的中心即圆心,进而可知正方形的对角线即为圆的直径,根据勾股定理求得正方形对角线的长度即可求得它的外接圆的半径.
    【详解】
    解:∵四边形是正方形,
    ∴的交点即为它的外接圆的圆心,



    故选C

    【点睛】
    本题考查了圆内接正多边形的性质,勾股定理,理解正方形的对角线即为圆的直径是解题的关键.
    2、C
    【解析】
    【分析】
    由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
    【详解】
    解:∵直线交x轴于点A,交y轴于点B,
    ∴令x=0,得y=-3,令y=0,得x=-4,
    ∴A(-4,0),B(0,-3),
    ∴OA=4,OB=3,
    ∴AB=5,
    设⊙P与直线AB相切于D,
    连接PD,

    则PD⊥AB,PD=1,
    ∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
    ∴△APD∽△ABO,
    ∴,
    ∴,
    ∴AP= ,
    ∴OP= 或OP= ,
    ∴P或P,
    故选:C.
    【点睛】
    本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
    3、D
    【解析】
    【分析】
    由BC两点的坐标可以得到直线BC∥y轴,则直线BC的垂直平分线为直线y=1,再由外心的定义可知△ABC外心的纵坐标为1,则设△ABC的外心为P(a,-1),利用两点距离公式和外心的性质得到,由此求解即可.
    【详解】
    解:∵B点坐标为(2,-1),C点坐标为(2, 3),
    ∴直线BC∥y轴,
    ∴直线BC的垂直平分线为直线y=1,
    ∵外心是三角形三条边的垂直平分线的交点,
    ∴△ABC外心的纵坐标为1,
    设△ABC的外心为P(a,1),
    ∴,
    ∴,
    解得,
    ∴△ABC外心的坐标为(-2, 1),
    故选D.
    【点睛】
    本题主要考查了坐标与图形,外心的性质与定义,两点距离公式,解题的关键在于能够熟知外心是三角形三边垂直平分线的交点.
    4、C
    【解析】
    【分析】
    根据边心距求得外接圆的半径为2,根据圆锥的底面圆周长等于扇形的弧长,计算圆锥的半径即可.
    【详解】
    如图,过点O作OG⊥AF,垂足为G,
    ∵正六边形的边心距为,
    ∴∠AOG=30°,OG=,
    ∴OA=2AG,
    ∴,
    解得GA=1,
    ∴OA=2,

    设圆锥的半径为r,根据题意,得2πr=,
    解得r=,
    故选C.
    【点睛】
    本题考查了扇形的弧长公式,圆锥的侧面积,熟练掌握弧长公式,圆锥的侧面积公式是解题的关键.
    5、D
    【解析】
    【分析】
    作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明△ADO∽△ACB,然后利用相似比得到,再根据比例的性质求出r即可.
    【详解】
    解:作OD⊥AC于D,OE⊥BC于E,如图,设⊙O的半径为r,

    ∵⊙O与AC、BC都相切,
    ∴OD=OE=r,
    而∠C=90°,
    ∴四边形ODCE为正方形,
    ∴CD=OD=r,
    ∵OD∥BC,
    ∴△ADO∽△ACB,

    ∵AF=AC-r,BC=3,AC=4,
    代入可得,
    ∴r=.
    故选:D.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.
    6、D
    【解析】
    【分析】
    作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,cm,cm;设茶杯的杯口外沿半径为,在中,由勾股定理知,进而得出结果.
    【详解】
    解:作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,

    由题意可知cm,cm;

    ∴AC=BC=4cm,
    设茶杯的杯口外沿半径为
    则在中,由勾股定理知
    解得
    故选D.
    【点睛】
    本题考查了垂径定理,切线的性质,勾股定理的应用.解题的关键在于将已知线段长度转化到一个直角三角形中求解计算.
    7、A
    【解析】
    【分析】
    如图,连接先求解 再利用圆周角定理可得,从而可得答案.
    【详解】
    解:如图,连接
    ,是的切线,







    故选A
    【点睛】
    本题考查的是三角形的内角和定理,四边形的内角和定理,圆周角定理的应用,圆的切线的性质的应用,理解是解本题的关键.
    8、B
    【解析】
    【分析】
    ⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.
    【详解】
    解:如图,⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,
    则∠CDI=∠C=∠CFI=90°,ID=IF=1,
    ∴四边形CDIF是正方形,
    ∴CD=CF=1,
    由切线长定理得:AD=AE,BE=BF,CF=CD,
    ∵直角三角形的外接圆半径为3,内切圆半径为1,
    ∴AB=6=AE+BE=BF+AD,
    即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,
    故选:B.

    【点睛】
    本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.
    9、D
    【解析】
    【分析】
    先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案
    【详解】
    解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OP⊥BC于P,
    由题意得:BC=4cm,
    ∵六边形ABCD是正六边形,
    ∴∠BOC=360°÷6=60°,
    又∵OB=OC,
    ∴△OBC是等边三角形,
    ∴,,
    ∴,
    ∴,
    ∴,
    故选D.

    【点睛】
    本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.
    10、D
    【解析】
    【分析】
    过A点作AH⊥BC于H,如图,利用等腰三角形的性质得到BH=CH=BC=4,则利用勾股定理可计算出AH=3,然后根据点与圆的位置关系的判定方法对A选项和B选项进行判断;根据直线与圆的位置关系对C选项和D选项进行判断.
    【详解】
    解:过A点作AH⊥BC于H,如图,

    ∵AB=AC,
    ∴BH=CH=BC=4,
    在Rt△ABH中,AH==3,
    ∵AB=5>3,
    ∴B点在⊙A外,所以A选项不符合题意;
    ∵AC=5>3,
    ∴C点在⊙A外,所以B选项不符合题意;
    ∴AH⊥BC,AH=3>半径,
    ∴直线BC与⊙A相离,所以C选项不符合题意,D选项符合题意.
    故选:D.
    【点睛】
    本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,若直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了点与圆的位置关系和等腰三角形的性质.
    二、填空题
    1、
    【解析】
    【分析】
    当⊙P在直线AB下方与直线AB相切时,可求得此时m的值;当⊙P在直线AB上方与直线AB相切时,可求得此时m的值,从而可确定符合题意的m的取值范围.
    【详解】
    ∵圆心P的坐标为(1,0),⊙P与y轴相切与点O
    ∴⊙P的半径为1
    ∵点A(-3,0),点 B(0,)
    ∴OA=3,

    ∴∠BAO=30°
    当⊙P在直线AB下方与直线AB相切时,如图,设切点为C,连接PC

    则PC⊥AB,且PC=1
    ∴AP=2PC=2
    ∴OP=OA−AP=3−2=1
    ∴P点坐标为(−1,0)
    即m=−1
    当⊙P在直线AB上方与直线AB相切时,如图,设切点为C,连接PD

    则PD⊥AB,且PD=1
    ∴AP=2PD=2
    ∴OP=OA+AP=3+2=5
    ∴P点坐标为(−5,0)
    即m=−5
    ∴⊙P沿x轴向左移动,当⊙P与直线AB相交时,m的取值范围为
    故答案为:
    【点睛】
    本题考查了直线与圆相交的位置关系,切线的性质定理等知识,这里通过讨论直线与圆相切的情况来解决直线与圆相交的情况,体现了转化思想,注意相切有两种情况,不要出现遗漏的情况.
    2、
    【解析】
    【分析】
    根据已知条件可得出,,再利用圆周角定理得出即可.
    【详解】
    解:、分别与相切于、两点,
    ,,



    故答案为:.
    【点睛】
    本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.
    3、90°
    【解析】
    【分析】
    先根据是的内接正六边形一边得,再根据圆周角性质得,再根据平行线的性质得,最后由三角形外角性质可得结论.
    【详解】
    解:∵是的内接正六边形一边





    故答案为90°
    【点睛】
    本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键
    4、##
    【解析】
    【分析】
    连接EO,并延长交圆于点G,在Rt△DEF中求出EF的值,再证明△DEF∽△FGE,然后根据相似三角形的性质即可求解.
    【详解】
    解:连接EO,并延长交圆于点G,

    ∵四边形是矩形,
    ∴CD=,∠D=90°,
    ∵与相切于点,
    ∴OE⊥CD,再结合矩形的性质可得:
    ∴DE=CE=3.
    ∵,
    ∴EF=.
    ∵与相切于点,
    ∴∠GED=90°.
    ∵GE是直径,
    ∴∠GFE=90°,
    ∴∠DEF+∠GEF=90°,∠EGF+∠GEF=90°,
    ∴∠DEF=∠EGF.
    ∵∠D=∠∠GFE=90°,
    ∴△DEF∽△FGE,
    ∴,
    ∴,
    ∴GE=,
    ∴的半径是,
    故答案为;.
    【点睛】
    本题考查了矩形的性质,勾股定理,切线的性质,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.
    5、6
    【解析】
    【分析】
    直接利用正三角形的性质得出BO=2DO=2,再由勾股定理求出BD的长即可解决问题.
    【详解】
    解:如图所示:连接BO,

    由题意可得,OD⊥BC,OD=,∠OBD=30°,
    故BO=2DO=2.BC=2BD
    由勾股定理得,

    故答案为:6.
    【点睛】
    此题主要考查了正多边形和圆,正确掌握正三角形的性质是解题关键.
    三、解答题
    1、 (1)OP+PQ>ON; OP=OM;PQ>MN
    (2)见解析
    (3)1<r<4
    【解析】
    【分析】
    (1)利用两点之间线段最短解答即可;
    (2)过点A作l的线AB,截取BC=MN,以AC为直径作⊙O;
    (3)作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,求出⊙O和⊙O′的半径,从而求出半径r的范围.
    (1)
    理由:不妨在⊙O上另外任取一点P,过点P作PQ⊥l,垂足为Q,连接OP,OQ.
    ∵OP+PQ>OQ,OQ>ON,
    ∴OP+PQ>ON.
    又ON=OM+MN;
    ∴OP+PQ>OM+MN.
    又 OP=OM,
    ∴PQ>MN.
    故答案为:OP+PQ>ON, OP=OM,PQ>MN;
    (2)
    解:如图,

    ⊙O是求作的图形;
    (3)
    (3)如图2,

    作AC的垂直平分线,交AC于F,交AB于E,以AF为直径作圆,过点A和点E作⊙O′,使⊙O′切EF于E,
    ∴∠FEO′=∠AFE=90°,
    ∴AF∥EO′,
    ∴∠AEO′=∠BAC=60°,
    ∵AO′=EO′,
    ∴△ADO′是等边三角形,
    ∴AE=AO′,
    ∵AB=8,∠B=30°,
    ∴AC=AB=4,
    ∴AF=2,
    ∴⊙O的半径是1,
    ∴AE=AB=4,
    ∴1<r<4,
    故答案是:1<r<4.
    【点睛】
    本题考查了与圆的有关位置,等边三角形判定和性质,尺规作图等知识,解决问题的关键是找出临界位置,作出图形.
    2、 (1)
    (2)②,③
    (3)
    (4)
    【解析】
    【分析】
    (1)作OD与相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得
    (2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;
    (3)线段BD绕点O的旋转路线的半径为1的上,当OD与相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD是的“关联线段”;
    (4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.
    (1)
    解:如图所示:作OD与相切,

    ∴,
    ∵,,
    ∴,
    ∴,
    ∴此时的角度最小,且,
    ∴切点在线段OD上,
    ∴OA的关联角为;
    (2)
    解:如图所示:连接,,,,

    ∵,,
    ∴,
    ∴切点不在线段上,不是的“关联线段”;
    ∵,,
    ∴,,
    ∵,
    ∴是的“关联线段”;
    ∵,
    ∴是的“关联线段”;
    (3)
    解:,,线段BD绕点O的旋转路线的半径为1的上,

    当OD与相切时,
    由(1)可得:,
    ∴当时,线段BD是的“关联线段”,
    故答案为:;
    (4)
    解:如图所示:当m取最大值时,

    M点运动最小半径是O到过点的直线l的距离是m,
    ∵,,
    ∴,
    ∴,
    ∴m的最大值为4,
    如图所示:当m取小值时,

    开始时存在ME与相切,
    ∵,,
    ∴,
    ∵,及点M所在位置,
    ∴,
    综上可得:,
    故答案为:.
    【点睛】
    题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.
    3、 (1)见解析;
    (2)见解析,的半径为
    【解析】
    【分析】
    (1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;
    (2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.
    (1)
    如图所示,点O即为所求

    (2)
    如图,∵PA是圆的切线,AO是半径,PB是圆的切线,
    ∴∠CAP=90°,PA=PB=3,∠CBO=90°,
    ∵AC=4,
    ∴PC==5,BC=5-3=2,
    设圆的半径为x,则OC=4-x,
    ∴,
    解得x=,
    故圆的半径为.
    【点睛】
    本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.
    4、 (1)BP=2
    (2)①4.8;②9.6
    【解析】
    【分析】
    (1)连接PT,由⊙P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在Rt△BPE中,用勾股定理即得BP=2;
    (2)①由⊙P与CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在Rt△BPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过P作PN⊥EM于N,由EM是△ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.
    (1)
    连接PT,如图:

    ∵⊙P与AD相切于点T,
    ∴∠ATP=90°,
    ∵四边形ABCD是矩形,
    ∴∠A=∠B=90°,
    ∴四边形ABPT是矩形,
    ∴PT=AB=4=PE,
    ∵E是AB的中点,
    ∴BE=AB=2,
    在Rt△BPE中,;
    (2)
    ①∵⊙P与CD相切,
    ∴PC=PE,
    设BP=x,则PC=PE=10-x,
    在Rt△BPE中,BP2+BE2=PE2,
    ∴x2+22=(10-x)2,
    解得x=4.8,
    ∴BP=4.8;
    ②点Q从点B出发沿射线BC移动,M是AQ的中点,点M在⊙P内的路径为EM,过P作PN⊥EM于N,如图:

    由题可知,EM是△ABQ的中位线,
    ∴EM∥BQ,
    ∴∠BEM=90°=∠B,
    ∵PN⊥EM,
    ∴∠PNE=90°,EM=2EN,
    ∴四边形BPNE是矩形,
    ∴EN=BP=4.8,
    ∴EM=2EN=9.6.
    故答案为:9.6.
    【点睛】
    本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.
    5、 (1)见解析
    (2)4,
    【解析】
    【分析】
    (1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;
    (2)设⊙O的半径为R,在Rt△OAE中,勾股定理求出R, 延长CO交⊙O于F,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.
    (1)
    证明:连接OA.
    ∵,
    ∴∠AOC+∠OAD=180°,
    ∵∠AOC=2∠ABC=2×45°=90°,
    ∴∠OAD=90°,
    ∴OA⊥AD,
    ∵OA是半径,
    ∴AD是⊙O的切线.

    (2)
    解:设⊙O的半径为R,则OA=R,OE=R-2.
    在Rt△OAE中,,
    ∴,
    解得或(不合题意,舍去),
    延长CO交⊙O于F,连接AF,
    ∵∠AEF=∠CEB,∠B=∠AFE,
    ∴△CEB∽△AEF,
    ∴,
    ∵CF是直径,
    ∴CF=8,∠CAF=90°,
    又∵∠F=∠ABC=45°,
    ∴∠F=∠ACF=45°,
    ∴AF=,
    ∴,
    ∴BC=.

    【点睛】
    此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题,共34页。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课后测评,共35页。试卷主要包含了如图,FA等内容,欢迎下载使用。

    初中数学第29章 直线与圆的位置关系综合与测试精品精练:

    这是一份初中数学第29章 直线与圆的位置关系综合与测试精品精练,共31页。试卷主要包含了下面四个结论正确的是,在中,,,给出条件等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map