2020-2021学年第29章 直线与圆的位置关系综合与测试精品课堂检测
展开
这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品课堂检测,共30页。试卷主要包含了如图,一把宽为2cm的刻度尺等内容,欢迎下载使用。
九年级数学下册第二十九章直线与圆的位置关系专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是( )A.0 B.1 C.2 D.无法确定2、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )A.3 B.4 C.5 D.63、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是( )A.2,2 B.4,4 C.4,2 D.4,4、如图,AB是⊙O的直径,BD与⊙O相切于点B,点C是⊙O上一点,连接AC并延长,交BD于点D,连接OC,BC,若∠BOC=50°,则∠D的度数为( )A.50° B.55° C.65° D.75°5、已知⊙O的半径为3,点P到圆心O的距离为4,则点P与⊙O的位置关系是( )A.点P在⊙O外 B.点P在⊙O上 C.点P在⊙O内 D.无法确定6、平面内,⊙O的半径为3,若点P在⊙O外,则OP的长可能为( )A.4 B.3 C.2 D.17、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为( )A.10cm B.8cm C.6cm D.5cm8、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).A.20° B.25° C.30° D.40°9、已知⊙O的半径等于8,点P在直线l上,圆心O到点P的距离为8,那么直线l与⊙O的位置关系是( )A.相切 B.相交C.相离、相切或相离 D.相切或相交10、如图所示,在的网格中,A、B、D、O均在格点上,则点O是△ABD的( )A.外心 B.重心 C.中心 D.内心第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使D,C,B在一条直线上,且,过点A作量角器圆弧所在圆的切线,切点为E,则是______度.2、下面是“过圆外一点作圆的切线”的尺规作图过程.已知:⊙O和⊙O外一点P.求作:过点P的⊙O的切线.作法:如图,(1)连接OP;(2)分别以点O和点P为圆心,大于的长半径作弧,两弧相交于M,N两点;(3)作直线MN,交OP于点C;(4)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(5)作直线PA,PB.直线PA,PB即为所求作⊙O的切线完成如下证明:证明:连接OA,OB,∵OP是⊙C直径,点A在⊙C上∴∠OAP=90°(___________)(填推理的依据).∴OA⊥AP.又∵点A在⊙O上,∴直线PA是⊙O的切线(___________)(填推理的依据).同理可证直线PB是⊙O的切线.3、已知⊙O的直径为8cm,如果直线AB上的一点与圆心的距离为4cm,则直线AB与⊙O的位置关系是 _____.4、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.5、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段与的“关联角”.(1)如图1,如果线段是的“关联线段”,那么它的“关联角”为______.(2)如图2,如果、、、、、.那么的“关联线段”有______(填序号,可多选).①线段;②线段;③线段(3)如图3,如果、,线段是的“关联线段”,那么的取值范围是______.(4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______.2、如图,在中,,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F.(1)试判断直线与的位置关系,并说明理由;(2)若,,求阴影部分的面积(结果保留).3、如图,⊙O是ABC的外接圆,∠ABC=45°,OCAD,AD交BC的延长线于D,AB交OC于E.(1)求证:AD是⊙O的切线;(2)若AE=,CE=2,求⊙O的半径和线段BC的长.4、如图,PA,PB是圆的切线,A,B为切点.(1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);(2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.5、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.(1)求证是的切线;(2)若,,求的半径. -参考答案-一、单选题1、A【解析】【分析】圆的半径为 圆心到直线的距离为 当时,圆与直线相离,直线与圆没有交点,当时,圆与直线相切,直线与圆有一个交点,时,圆与直线相交,直线与圆有两个交点,根据原理可得答案.【详解】解:∵⊙O的半径等于为8,圆心O到直线l的距离为为6,∴,∴直线l与相离,∴直线l与⊙O的公共点的个数为0,故选A.【点睛】本题考查的是圆与直线的位置关系,圆与直线的位置关系有相离,相交,相切,熟悉三种位置关系对应的公共点的个数是解本题的关键.2、B【解析】【分析】由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.【详解】∵PA,PB是⊙O的切线,A,B为切点,∴,,∴在和中,,∴,∴.故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.3、B【解析】【分析】根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.【详解】解:如图,∵正六边形的任一内角为120°,∴∠ABD=180°-120°=60°, ∴∠BAD=30°,为等边三角形,∵ ∴ ∴ ∴ ∴这个正六边形半径R和扳手的开口a的值分别是4,4.故选:B.【点睛】本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.4、C【解析】【分析】首先证明∠ABD=90°,由∠BOC=50°,根据圆周角定理求出∠A的度数即可解决问题.【详解】解:∵BD是切线,∴BD⊥AB,∴∠ABD=90°,∵∠BOC=50°,∴∠A=∠BOC=25°,∴∠D=90°﹣∠A=65°,故选:C.【点睛】本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.5、A【解析】【分析】根据点与圆心的距离与半径的大小关系即可确定点P与⊙O的位置关系.【详解】解:∵⊙O的半径分别是3,点P到圆心O的距离为4,∴d>r,∴点P与⊙O的位置关系是:点在圆外.故选:A.【点睛】本题主要考查了点与圆的位置关系,准确分析判断是解题的关键.6、A【解析】【分析】根据点与圆的位置关系得出OP>3即可.【详解】解:∵⊙O的半径为3,点P在⊙O外,∴OP>3,故选:A.【点睛】本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外d>r,点在圆上d=r,点在圆内d<r.7、D【解析】【分析】作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,cm,cm;设茶杯的杯口外沿半径为,在中,由勾股定理知,进而得出结果.【详解】解:作OD⊥AB于C,OC的延长线交圆于D,其中点为圆心,为半径,由题意可知cm,cm;∵∴AC=BC=4cm,设茶杯的杯口外沿半径为则在中,由勾股定理知解得故选D.【点睛】本题考查了垂径定理,切线的性质,勾股定理的应用.解题的关键在于将已知线段长度转化到一个直角三角形中求解计算.8、B【解析】【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=∠AOP=×50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.9、D【解析】【分析】根据垂线段最短,则点O到直线l的距离≤5,则直线l与⊙O的位置关系是相切或相交.【详解】解:的半径为8,,点到直线的距离,直线与的位置关系是相切或相交.故选:D.【点睛】此题要特别注意OP不一定是点到直线的距离.判断点和直线的位置关系,必须比较点到直线的距离和圆的半径之间的大小关系.10、A【解析】【分析】根据网格的特点,勾股定理求得,进而即可判断点O是△ABD的外心【详解】解:∵∴O是△ABD的外心故选A【点睛】本题考查了三角形的外心的判定,勾股定理与网格,理解三角形的外心的定义是解题的关键.三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等.二、填空题1、2、 直径所对的圆周角是直角 经过半径的外端并且垂直于这条半径的直线是圆的切线【解析】【分析】连接OA,OB,根据圆周角定理可知∠OAP=90°,再依据切线的判定证明结论;【详解】证明:连接OA,OB,∵OP是⊙C直径,点A在⊙C上,∴∠OAP=90°(直径所对的圆周角是直角),∴OA⊥AP.又∵点A在⊙O上,∴直线PA是⊙O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),同理可证直线PB是⊙O的切线,故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线.3、相切或相交【解析】【分析】本题需分类讨论,当直线上的点到圆心的连线垂直于直线AB时,直线于圆的位置关系为相切,当直线上的点到圆心的连线与直线AB不垂直时,直线到圆心的距离小于圆的半径,直线与圆相交.【详解】设直线AB上与圆心距离为4cm的点为C,当OC⊥AB时,OC=⊙O的半径,所以直线AB与⊙O相切,当OC与AB不垂直时,圆心O到直线AB的距离小于OC,所以圆心O到直线AB的距离小于⊙O的半径,所以直线AB与⊙O相交,综上所述直线AB与⊙O的位置关系为相切或相交,故答案为:相切或相交.【点睛】本题考查直线与圆的位置关系,本题需根据圆心与直线上一点的距离,分类讨论圆与直线的位置关系,利用分类讨论思想是解决本题的关键.4、【解析】【分析】如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.【详解】解:如图, ∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∴CE是直径,∠ECD=45°,根据题意得:AB=2.5, ,∴ ,∴ ,即此斛底面的正方形的边长为 尺.故答案为:【点睛】本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.5、3【解析】【分析】由切线长定理和,可得为等边三角形,则.【详解】解:连接,如下图:,分别为的切线,,为等腰三角形,,,为等边三角形,,,.故答案为:3.【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.三、解答题1、 (1)(2)②,③(3)(4)【解析】【分析】(1)作OD与相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得(2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;(3)线段BD绕点O的旋转路线的半径为1的上,当OD与相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD是的“关联线段”;(4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.(1)解:如图所示:作OD与相切, ∴,∵,,∴,∴,∴此时的角度最小,且,∴切点在线段OD上,∴OA的关联角为;(2)解:如图所示:连接,,,,∵,,∴,∴切点不在线段上,不是的“关联线段”;∵,,∴,,∵,∴是的“关联线段”;∵,∴是的“关联线段”;(3)解:,,线段BD绕点O的旋转路线的半径为1的上,当OD与相切时,由(1)可得:,∴当时,线段BD是的“关联线段”,故答案为:;(4)解:如图所示:当m取最大值时,M点运动最小半径是O到过点的直线l的距离是m,∵,,∴,∴,∴m的最大值为4,如图所示:当m取小值时,开始时存在ME与相切,∵,,∴,∵,及点M所在位置,∴,综上可得:,故答案为:.【点睛】题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.2、 (1)BC与⊙O相切,理由见详解(2)【解析】【分析】(1)根据题意先证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论.(1)解: BC与⊙O相切.证明:∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切;(2)∵,∠ODB=90°,,∴,在Rt△OBD中, 由勾股定理得:,∴S△OBD= OD•BD= ,S扇形ODF= ,∴阴影部分的面积=.【点睛】本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键.3、 (1)见解析(2)4,【解析】【分析】(1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;(2)设⊙O的半径为R,在Rt△OAE中,勾股定理求出R, 延长CO交⊙O于F,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.(1)证明:连接OA.∵, ∴∠AOC+∠OAD=180°,∵∠AOC=2∠ABC=2×45°=90°,∴∠OAD=90°, ∴OA⊥AD, ∵OA是半径,∴AD是⊙O的切线. (2)解:设⊙O的半径为R,则OA=R,OE=R-2.在Rt△OAE中,,∴,解得或(不合题意,舍去),延长CO交⊙O于F,连接AF,∵∠AEF=∠CEB,∠B=∠AFE,∴△CEB∽△AEF,∴, ∵CF是直径,∴CF=8,∠CAF=90°,又∵∠F=∠ABC=45°, ∴∠F=∠ACF=45°,∴AF=,∴, ∴BC=. .【点睛】此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.4、 (1)见解析;(2)见解析,的半径为【解析】【分析】(1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;(2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.(1)如图所示,点O即为所求(2)如图,∵PA是圆的切线,AO是半径,PB是圆的切线,∴∠CAP=90°,PA=PB=3,∠CBO=90°,∵AC=4,∴PC==5,BC=5-3=2,设圆的半径为x,则OC=4-x,∴,解得x=,故圆的半径为.【点睛】本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.5、 (1)见解析(2)【解析】【分析】(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;(2)证明,利用相似三角形的性质可求的半径.(1)证明:连接,∵,∴,∴是直径,是的中点.∵平分,∴,∵,∴,∴,∴.又∵,∴,∴,又∵经过半径的外端,∴是的切线.(2)解:∵,∴,在与中,,,∴.∴,在中,,,∴.设半径为,则,,即,∴.∴的半径为.【点睛】本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
相关试卷
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品习题,共28页。
这是一份2021学年第29章 直线与圆的位置关系综合与测试精品达标测试,共33页。
这是一份2021学年第29章 直线与圆的位置关系综合与测试精品同步练习题,共34页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。