搜索
    上传资料 赚现金
    英语朗读宝

    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试试卷(精选含详解)

    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试试卷(精选含详解)第1页
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试试卷(精选含详解)第2页
    难点详解冀教版九年级数学下册第二十九章直线与圆的位置关系同步测试试卷(精选含详解)第3页
    还剩30页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后练习题

    展开

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课后练习题,共33页。试卷主要包含了将一把直尺等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系同步测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是(  )

    A.30° B.36° C.60° D.72°
    2、如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若,则这个正多边形的边数为( )

    A.10 B.11 C.12 D.13
    3、下面四个结论正确的是( )
    A.度数相等的弧是等弧 B.三点确定一个圆
    C.在同圆或等圆中,圆心角是圆周角的2倍 D.三角形的外心到三角形的三个顶点的距离相等
    4、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是( )
    A.12 B.14 C.16 D.18
    5、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )

    A.6 B. C.3 D.
    6、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )

    A.1cm B.2cm C.2cm D.4cm
    7、如图,AB是⊙O的直径,点D在⊙O上,连接OD、BD,过点D作⊙O的切线交BA延长线于点C,若∠C=40°,则∠B的度数为(  )

    A.15° B.20° C.25° D.30°
    8、如图,矩形ABCD中,G是BC的中点,过A、D、G三点的⊙O与边AB、CD分别交于点E、点F,给出下列判断:(1)AC与BD的交点是⊙O的圆心;(2)AF与DE的交点是⊙O的圆心;(3)AE=DF;(4)BC与⊙O相切,其中正确判断的个数是( )

    A.4 B.3 C.2 D.1
    9、已知正五边形的边长为1,则该正五边形的对角线长度为( ).
    A. B. C. D.
    10、如图,等边△ABC内接于⊙O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切⊙O于点C,AF⊥CF交⊙O于点G.下列结论:①∠ADC=60°;②DB2=DE•DA;③若AD=2,则四边形ABDC的面积为;④若CF=2,则图中阴影部分的面积为.正确的个数为(  )

    A.1个 B.2个 C.3个 D.4个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知正六边形的周长是24,则这个正六边形的半径为_____ .
    2、如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.则∠APB=________度;

    3、在中,,,D,E分别是,的中点,若等腰绕点A逆时针旋转,得到等腰,记直线与的交点为P,则点P到所在直线的距离的最大值为________.

    4、如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使D,C,B在一条直线上,且,过点A作量角器圆弧所在圆的切线,切点为E,则是______度.

    5、如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BG⊥AE于点G,连接CG并延长交AD于点F,则AF的最大值是_______.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.

    (1)求证是的切线;
    (2)若,,求的半径.
    2、如图,已知是的直径,点在上,点在外.

    (1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)
    (2)综合运用,在你所作的图中.若,求证:是的切线.
    3、如图,是的直径,是圆上两点,且有,连结,作的延长线于点.

    (1)求证:是的切线;
    (2)若,求阴影部分的面积.(结果保留)
    4、如图,AB为的切线,B为切点,过点B作,垂足为点E,交于点C,连接CO,并延长CO与AB的延长线交于点D,与交于点F,连接AC.

    (1)求证:AC为的切线:
    (2)若半径为2,.求阴影部分的面积.
    5、如图,PA,PB是圆的切线,A,B为切点.

    (1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);
    (2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.
    【详解】
    解:∵正五边形ABCDE中,
    ∴∠BCD==108°,CB=CD,
    ∴∠CBD=∠CDB=(180°-108°)=36°,
    故选:B.
    【点睛】
    本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.
    2、A
    【解析】
    【分析】
    作正多边形的外接圆,连接 AO,BO,根据圆周角定理得到∠AOB=36°,根据中心角的定义即可求解.
    【详解】
    解:如图,作正多边形的外接圆,连接AO,BO,
    ∴∠AOB=2∠ADB=36°,
    ∴这个正多边形的边数为=10.
    故选:A.

    【点睛】
    此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.
    3、D
    【解析】
    【分析】
    根据圆的有关概念、确定圆的条件、圆周角定理及三角形的外心的性质解得即可.
    【详解】
    解:A、在同圆或等圆中,能完全重合的弧才是等弧,故错误;
    B、不在同一直线上的三点确定一个圆,故错误;
    C、在同圆或等圆中,同弧或等弧所对的圆心角是圆周角的2倍,故错误;
    D、三角形的外心到三角形的三个顶点的距离相等,故正确;
    故选D.
    【点睛】
    本题考查了圆的有关的概念,属于基础知识,必须掌握.
    4、B
    【解析】
    【分析】
    ⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.
    【详解】
    解:如图,⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,
    则∠CDI=∠C=∠CFI=90°,ID=IF=1,
    ∴四边形CDIF是正方形,
    ∴CD=CF=1,
    由切线长定理得:AD=AE,BE=BF,CF=CD,
    ∵直角三角形的外接圆半径为3,内切圆半径为1,
    ∴AB=6=AE+BE=BF+AD,
    即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,
    故选:B.

    【点睛】
    本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.
    5、D
    【解析】
    【分析】
    如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知∠OCA=∠OBA=90°,OC=OB,即可证明Rt△OCA≌Rt△OBA得到∠OAC=∠OAB,则,∠AOB=30°,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为.
    【详解】
    解:如图所示,设圆的圆心为O,连接OC,OB,
    ∵AC,AB都是圆O的切线,
    ∴∠OCA=∠OBA=90°,OC=OB,
    又∵OA=OA,
    ∴Rt△OCA≌Rt△OBA(HL),
    ∴∠OAC=∠OAB,
    ∵∠DAC=60°,
    ∴,
    ∴∠AOB=30°,
    ∴OA=2AB=6,
    ∴,
    ∴圆O的直径为,
    故选D.

    【点睛】
    本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.
    6、D
    【解析】
    【分析】
    根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.
    【详解】
    解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于

    设半径为r,即OA=OB=AB=r,
    OM=OA•sin∠OAB=,
    ∵圆O的内接正六边形的面积为(cm2),
    ∴△AOB的面积为(cm2),
    即,

    解得r=4,
    故选:D.
    【点睛】
    本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.
    7、C
    【解析】
    【分析】
    根据切线的性质得到∠CDO=90°,求得∠COD=90°-40°=50°,根据等腰三角形的性质和三角形外角的性质即可得到结论.
    【详解】
    解:∵CD是⊙O的切线,
    ∴∠CDO=90°,
    ∵∠C=40°,
    ∴∠COD=90°-40°=50°,
    ∵OD=OB,
    ∴∠B=∠ODB,
    ∵∠COD=∠B+∠ODB,
    ∴∠B=∠COD=25°,
    故选:C.
    【点睛】
    本题考查了切线的性质,圆周角定理,三角形外角的性质,等腰三角形的性质,熟练掌握切线的性质是解题的关键.
    8、B
    【解析】
    【分析】
    连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O相切;接着利用OG=OD可判断圆心O不是AC与BD的交点;然后根据四边形AEFD为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.
    【详解】
    解:连接DG、AG,作GH⊥AD于H,连接OD,如图,
    ∵G是BC的中点,
    ∴CG=BG,
    ∵CD=BA,根据勾股定理可得,
    ∴AG=DG,
    ∴GH垂直平分AD,
    ∴点O在HG上,
    ∵AD∥BC,
    ∴HG⊥BC,
    ∴BC与圆O相切;
    ∵OG=OD,
    ∴点O不是HG的中点,
    ∴圆心O不是AC与BD的交点;
    ∵∠ADF=∠DAE=90°,
    ∴∠AEF=90°,
    ∴四边形AEFD为⊙O的内接矩形,
    ∴AF与DE的交点是圆O的圆心;AE=DF;
    ∴(1)错误,(2)(3)(4)正确.
    故选:B.

    【点睛】
    本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了矩形的性质和三角形外心.
    9、C
    【解析】
    【分析】
    如图,五边形ABCDE为正五边形, 证明 再证明可得:设AF=x,则AC=1+x,再解方程即可.
    【详解】
    解:如图,五边形ABCDE为正五边形,
    ∴五边形的每个内角均为108°,

    ∴∠BAG=∠ABF=∠ACB=∠CBD= 36°,
    ∴∠BGF=∠BFG=72°,




    设AF=x,则AC=1+x,


    解得:,
    经检验:不符合题意,舍去,

    故选C
    【点睛】
    本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明是解本题的关键.
    10、C
    【解析】
    【分析】
    如图1,△ABC是等边三角形,则∠ABC=60°,根据同弧所对的圆周角相等∠ADC=∠ABC=60°,所以判断①正确;如图1,可证明△DBE∽△DAC,则,所以DB•DC=DE•DA,而DB与DC不一定相等,所以判断②错误;如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,先证明△ABK≌△ACD,可证明S四边形ABDC=S△ADK,可以求得S△ADK=,所以判断③正确;如图3,连接OA、OG、OC、GC,由CF切⊙O于点C得CF⊥OC,而AF⊥CF,所以AF∥OC,由圆周角定理可得∠AOC=120°,则∠OAC=∠OCA=30°,于是∠CAG=∠OCA=30°,则∠COG=2∠CAG=60°,可证明△AOG和△COG都是等边三角形,则四边形OABC是菱形,因此OA∥CG,推导出S阴影=S扇形COG,在Rt△CFG中根据勾股定理求出CG的长为4,则⊙O的半径为4,可求得S阴影=S扇形COG==,所以判断④正确,所以①③④这3个结论正确.
    【详解】
    解:如图1,∵△ABC是等边三角形,
    ∴∠ABC=60°,
    ∵等边△ABC内接于⊙O,
    ∴∠ADC=∠ABC=60°,
    故①正确;
    ∵∠BDE=∠ACB=60°,∠ADC=∠ABC=60°,
    ∴∠BDE=∠ADC,
    又∠DBE=∠DAC,
    ∴△DBE∽△DAC,
    ∴,
    ∴DB•DC=DE•DA,
    ∵D是上任一点,
    ∴DB与DC不一定相等,
    ∴DB•DC与DB2也不一定相等,
    ∴DB2与DE•DA也不一定相等,
    故②错误;

    如图2,作AH⊥BD于点H,延长DB到点K,使BK=CD,连接AK,
    ∵∠ABK+∠ABD=180°,∠ACD+∠ABD=180°,
    ∴∠ABK=∠ACD,
    ∴AB=AC,
    ∴△ABK≌△ACD(SAS),
    ∴AK=AD,S△ABK=S△ACD,
    ∴DH=KH=DK,

    ∵∠AHD=90°,∠ADH=60°,
    ∴∠DAH=30°,
    ∵AD=2,
    ∴DH=AD=1,
    ∴DK=2DH=2,,
    ∴S△ADK=,
    ∴S四边形ABDC=S△ABD+S△ACD=S△ABD+S△ABK=S△ADK=,
    故③正确;
    如图3,连接OA、OG、OC、GC,则OA=OG=OC,
    ∵CF切⊙O于点C,
    ∴CF⊥OC,
    ∵AF⊥CF,
    ∴AF∥OC,
    ∵∠AOC=2∠ABC=120°,
    ∴∠OAC=∠OCA=×(180°﹣120°)=30°,
    ∴∠CAG=∠OCA=30°,
    ∴∠COG=2∠CAG=60°,
    ∴∠AOG=60°,
    ∴△AOG和△COG都是等边三角形,
    ∴OA=OC=AG=CG=OG,
    ∴四边形OABC是菱形,
    ∴OA∥CG,
    ∴S△CAG=S△COG,
    ∴S阴影=S扇形COG,
    ∵∠OCF=90°,∠OCG=60°,
    ∴∠FCG=30°,
    ∵∠F=90°,
    ∴FG=CG,
    ∵FG2+CF2=CG2,CF=,
    ∴(CG)2+()2=CG2,
    ∴CG=4,
    ∴OC=CG=4,
    ∴S阴影=S扇形COG==,
    故④正确,
    ∴①③④这3个结论正确,
    故选C.

    【点睛】
    本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.
    二、填空题
    1、4
    【解析】
    【分析】
    由于正六边形可以由其半径分为六个全等的正三角形,而三角形的边长就是正六边形的半径,由此即可求解.
    【详解】
    解:∵正六边形可以由其半径分为六个全等的正三角形,
    而三角形的边长就是正六边形的半径,
    又∵正六边形的周长为24,
    ∴正六边形边长为24÷6=4,
    ∴正六边形的半径等于4.
    故答案为4.
    【点睛】
    此题主要考查正多边形和圆,解题的关键是熟练掌握基本知识,属于中考基础题.
    2、60
    【解析】
    【分析】
    先根据圆的切线的性质可得,从而可得,再根据切线长定理可得,然后根据等边三角形的判定与性质即可得.
    【详解】
    解:是的切线,




    是等边三角形,

    故答案为:60.
    【点睛】
    本题考查了圆的切线的性质、切线长定理等知识点,熟练掌握圆的切线的性质是解题关键.
    3、##
    【解析】
    【分析】
    首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.
    【详解】
    解:如图,作PG⊥AB,交AB所在直线于点G,

    ∵D1,E1在以A为圆心,AD为半径的圆上,
    当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,
    此时四边形AD1PE1是正方形,
    ∵∠CAB=90°,AC=AB=4,D,E分别是AB,AC的中点,
    ∴AD=AE1=AD1=PD1=2,
    则BD1=,
    故∠ABP=30°,
    则PB=2+2,
    ∴PG=PB=,
    故点P到AB所在直线的距离的最大值为:PG=.
    故答案为:.
    【点睛】
    本题主要考查了旋转的性质以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.
    4、
    5、1
    【解析】
    【分析】
    以AB为直径作圆,当CF与圆相切时,AF最大.根据切线长定理转化线段AF+BC=CF,在Rt△DFC利用勾股定理求解.
    【详解】
    解:以AB为直径作圆,因为∠AGB=90°,所以G点在圆上.

    当CF与圆相切时,AF最大.
    此时FA=FG,BC=CG.
    设AF=x,则DF=4−x,FC=4+x,
    在Rt△DFC中,利用勾股定理可得:
    42+(4−x)2=(4+x)2,
    解得x=1.
    故答案为:1.
    【点睛】
    本题主要考查正方形的性质、圆中切线长定理以及勾股定理,熟练掌握相关性质定理是解本题的关键.
    三、解答题
    1、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
    (2)证明,利用相似三角形的性质可求的半径.
    (1)
    证明:连接,
    ∵,
    ∴,
    ∴是直径,是的中点.
    ∵平分,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.
    又∵,
    ∴,
    ∴,
    又∵经过半径的外端,
    ∴是的切线.

    (2)
    解:∵,
    ∴,
    在与中,
    ,,
    ∴.
    ∴,
    在中,,,
    ∴.
    设半径为,则,,
    即,
    ∴.
    ∴的半径为.
    【点睛】
    本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
    2、 (1)作图见解析
    (2)证明见解析
    【解析】
    【分析】
    (1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
    (2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
    (1)
    解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.

    (2)
    解:连接AD,如图

    ∵为直径




    又∵AB为直径
    ∴AE是的切线.
    【点睛】
    本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.
    3、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)要证明DE是⊙O的切线,所以连接OD,只要求出∠ODE=90°即可解答;
    (2)连接BD,利用Rt△ADB的面积加上弓形面积即可求出阴影部分的面积.
    (1)
    证明:连接OD,

    ∵,
    ∴∠CAD=∠BAD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠CAD=∠ODA,
    ∴AE∥OD,
    ∴∠E+∠ODE=90°,
    ∵DE⊥AC,
    ∴∠E=90°,
    ∴∠ODE=180°﹣∠E=90°,
    ∵OD是圆O的半径,
    ∴DE是⊙O的切线;
    (2)
    连接BD,

    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∵∠ADE=60°,∠E=90°,
    ∴∠CAD=90°﹣∠ADE=30°,
    ∴∠DAB=∠CAD=30°,
    ∴AB=2BD,
    ∵,

    ∴BD=2,BA=4,
    ∴OD=OB=2,
    ∴△ODB是等边三角形,
    ∴∠DOB=60°,
    ∴△ADB的面积=AD•DB
    =×2×2
    =2,
    ∵OA=OB,
    ∴△DOB的面积=△ADB的面积=,
    ∴阴影部分的面积为:
    △ADB的面积+扇形DOB的面积﹣△DOB的面积
    =2﹣
    =,
    ∴阴影部分的面积为:.
    【点睛】
    本题考查了切线的判定与性质,圆周角定理,扇形的面积公式,勾股定理,含30°角的直角三角形,根据题目的已知条件并结合图形,添加适当的辅助线是解题的关键.
    4、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)根据切线的判定方法,证出即可;
    (2)由勾股定理得,,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.
    (1)
    解:如图,连接OB,

    ∵AB是的切线,
    ∴,即,
    ∵BC是弦,,
    ∴,
    ∴,在和中,,
    ∴,
    ∴,即,
    ∴AC是的切线;
    (2)
    解:在中,
    由勾股定理得,,,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.
    5、 (1)见解析;
    (2)见解析,的半径为
    【解析】
    【分析】
    (1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;
    (2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.
    (1)
    如图所示,点O即为所求

    (2)
    如图,∵PA是圆的切线,AO是半径,PB是圆的切线,
    ∴∠CAP=90°,PA=PB=3,∠CBO=90°,
    ∵AC=4,
    ∴PC==5,BC=5-3=2,
    设圆的半径为x,则OC=4-x,
    ∴,
    解得x=,
    故圆的半径为.
    【点睛】
    本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品当堂达标检测题,共34页。

    2021学年第29章 直线与圆的位置关系综合与测试优秀课后复习题:

    这是一份2021学年第29章 直线与圆的位置关系综合与测试优秀课后复习题,共32页。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀巩固练习:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀巩固练习,共34页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map