![2021-2022学年冀教版九年级数学下册第三十章二次函数课时练习试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12734560/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第三十章二次函数课时练习试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12734560/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版九年级数学下册第三十章二次函数课时练习试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12734560/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第30章 二次函数综合与测试精品复习练习题
展开
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品复习练习题,共25页。试卷主要包含了对于二次函数,下列说法正确的是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、抛物线的顶点坐标为( )A.(﹣4,﹣5) B.(﹣4,5) C.(4,﹣5) D.(4,5)2、抛物线y=4(2x﹣3)2+3的顶点坐标是( )A.(,3) B.(4,3) C.(3,3) D.(﹣3,3)3、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图( )A. B.C. D.4、下列二次函数的图象中,顶点在第二象限的是( )A. B.C. D.5、抛物线y=x2+4x+5的顶点坐标是( )A.(2,5) B.(2,1) C.(﹣2,5) D.(﹣2,1)6、如图,二次函数的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线,点B的坐标为,则下列结论:①;②;③;④,其中正确的结论有( )个.A.1个 B.2个 C.3个 D.4个7、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )A.2 个 B.3 个 C.4 个 D.5 个.8、对于二次函数,下列说法正确的是( )A.若,则y随x的增大而增大 B.函数图象的顶点坐标是C.当时,函数有最大值-4 D.函数图象与x轴有两个交点9、对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+4x+c有两个相异的不动点x1,x2,且x1<3<x2,则c的取值范围是( )A.c<﹣6 B.c<﹣18 C.c<﹣8 D.c<﹣1110、若点,都在二次函数的图象上,且,则的取值范围是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、中国跳水队在第三十二届夏季奥林匹克运动会上获得7金5银12枚奖牌的好成绩.某跳水运动员从起跳至人水的运动路线可以看作是抛物线的一部分.如图所示,该运动员起跳点A距离水面10m,运动过程中的最高点B距池边2.5m,入水点C距池边4m,根据上述信息,可推断出点B距离水面______m.2、某农场拟建两间矩形饲养室,一面靠足够长的墙体,中间用一道围栏隔开,并在如图所示的两处各留宽的门,所有围栏的总长(不含门)为,若要使得建成的饲养室面积最大,则利用墙体的长度为______.3、在东京奥运会跳水比赛中,中国小花全红婵的表现,令人印象深刻.在正常情况下,跳水运动员进行10米跳台训练时,必须在距水面5米之前完成规定的翻腾动作,并调整好入水姿势,否则容易出现失误.假设某运动员起跳后第t秒离水面的高度为h米,且.那么为了避免出现失误,这名运动员最多有_____秒时间,完成规定的翻腾动作.4、二次函数的图像与x轴公共点的个数是______.5、如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(a、k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x轴,与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB与线段CD的长度和为_____.三、解答题(5小题,每小题10分,共计50分)1、已知二次函数的图像经过点,,.(1)求二次函数的表达式;(2)若二次函数的图像与轴交于、两点,与轴交于点,其顶点为,则以,,,为顶点的四边形的面积为__________;(3)将二次函数的图像向左平移个单位后恰好经过坐标原点,则的值为__________.2、小君根据学习经验对函数y=|ax2+bx+c|进行了探究.(1)写出该函数自变量的取值范围 ;(2)下列表示y与x的几组对应值.x…﹣1012345…y…50343m5…则m= ;(3)如图,在平面直角坐标系xOy中,描出以上对各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)请根据图象,写出:①当0≤x≤4时,y的最大值是 ;②当z<x<z+1时,y随x的增大而增大,则z的取值范围是 .3、如图,因疫情防控需要,某校在足够大的空地利用旧墙MN和隔离带围成一个矩形隔离区ABCD,墙长为a米,AD≤MN,矩形隔离区的一边靠墙,其它三边一共用隔离带200米.(1)a=30,所围成的矩形隔离区的面积为1800平方米,求所利用旧墙AD的长;(2)若a=150.求矩形隔离区ABCD面积的最大值.4、某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间t(天)之间的函数关系为p=,且t为整数,日销售量y(千克)与时间t(天)之间的函数关系如图所示.(1)求日销售量y与时间t的函数表达式.(2)哪一天的日销售利润最大?最大利润是多少?5、某运动员在推铅球时,铅球经过的路线是抛物线的一部分(如图),落地点B的坐标是(10,0),已知抛物线的函数解析式为y=﹣+c.(1)求c的值;(2)计算铅球距离地面的最大高度. -参考答案-一、单选题1、A【解析】【分析】根据抛物线的顶点坐标为 ,即可求解.【详解】解:抛物线的顶点坐标为. 故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握抛物线的顶点坐标为是解题的关键.2、A【解析】【分析】根据顶点式的顶点坐标为求解即可【详解】解:抛物线的顶点坐标是故选A【点睛】本题考查了二次函数顶点式的顶点坐标为,掌握顶点式求顶点坐标是解题的关键.3、B【解析】【分析】分别利用函数解析式分析图象得出答案.【详解】解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;B、两函数图象符合题意;C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.故选:B.【点睛】此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.4、C【解析】【分析】根据二次函数的顶点式求得顶点坐标,即可判断.【详解】解:A.二次函数的顶点为(1,3),在第一象限,不合题意;B.二次函数的顶点为(1,﹣3),在第四象限,不合题意;C.二次函数的顶点为(﹣1,3),在第二象限,符合题意;D.二次函数的顶点为(﹣1,﹣3),在第三象限,不合题意;故选:C.【点睛】本题考查二次函数的图象、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.5、D【解析】【分析】利用顶点公式(﹣,),进行解题.【详解】解:∵抛物线y=x2+4x+5∴x=﹣=﹣=﹣2,y==1∴顶点为(﹣2,1)故选:D.【点睛】此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的顶点公式为(﹣,).6、D【解析】【分析】根据二次函数的对称性,以及参数a、b、c的意义即可求出答案.【详解】解:∵抛物线的对称轴为x=-1,所以B(1,0)关于直线x=-1的对称点为A(-3,0),∴AB=1-(-3)=4,故①正确;由图象可知:抛物线与x轴有两个交点, ∴Δ=b2-4ac>0,故②正确;由图象可知:抛物线开口向上,∴a>0,由对称轴可知:−<0,∴b>0,故③正确;当x=-1时,y=a-b+c<0,故④正确;所以,正确的结论有4个,故选:D.【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质.7、C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;故选C.【点睛】本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.8、A【解析】【分析】先将二次函数的解析式化为顶点式,再逐项判断即可求解.【详解】解:∵,且 ,∴二次函数图象开口向下,∴A、若,则y随x的增大而增大,故本选项正确,符合题意;B、函数图象的顶点坐标是,故本选项错误,不符合题意;C、当时,函数有最大值-2,故本选项错误,不符合题意;∵ ,∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.9、B【解析】【分析】由题意得不动点的横纵坐标相等,即在直线y=x上,故二次函数与直线y=x有两个交点,且横坐标满足x1<3<x2,可以理解为x=3时,一次函数的值大于二次函数的值.【详解】解:由题意得:不动点在一次函数y=x图象上,∴一次函数y=x与二次函数的图象有两个不同的交点,∵两个不动点x1,x2满足x1<3<x2,∴x=3时,一次函数的函数值大于二次函数的函数值,∴3>32+4×3+c,∴c<-18.故选:B.【点睛】本题以新定义为背景,考查了二次函数图象和一次函数图象的交点与系数间的关系,本题亦可以转化为方程的解来解题.10、D【解析】【分析】先求出抛物线的对称轴,再根据二次函数的性质,当点和在直线的右侧时;当点和在直线的两侧时,然后分别解两个不等式即可得到的范围.【详解】抛物线的对称轴为直线,∵,,当点和在直线的右侧,则,解得,当点和在直线的两侧,则,解得,综上所述,的范围为.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标满足其解析式是解题的关键.二、填空题1、【解析】【分析】如图建立平面直角坐标系,求出抛物线解析式,再求顶点坐标即可.【详解】解:建立平面直角坐标系如图:根据题意可知,点A的坐标为(3,10),点C的坐标为(5,0),抛物线的对称轴为直线x=3.5,设抛物线的的解析式为y=ax2+bx+c,把上面信息代入得,,解得,,抛物线解析式为:,把代入得,;故答案为:【点睛】本题考查了二次函数的应用,解题关键是建立平面直角坐标系,求出二次函数解析式,利用二次函数解析式的性质求解.2、14【解析】【分析】设平行于墙体的材料长度为 ,则垂直于墙体的材料长度为 根据题意列出函数关系式,再利用二次函数的性质,即可求解.【详解】解:设平行于墙体的材料长度为 ,建成的饲养室的总面积为 ,则垂直于墙体的材料长度为 根据题意得:建成的饲养室的总面积为 ,∴当 时,建成的饲养室面积最大,即此时利用墙体的长度为 .故答案为:14【点睛】本题主要考查了二次函数的应用,明确题意,准确得到等量关系是解题的关键.3、##1.5【解析】【分析】根据题意,令,解一元二次方程求解即可.【详解】依题意整理得即解得(不符合题意,舍)故答案为:【点睛】本题考查了一元二次方程的应用,读懂题意将代入关系式是解题的关键.4、0【解析】【分析】令,得到一元二次方程,根据一元二次方程根的判别式求解即可.【详解】令,则二次函数的图像与x轴无公共点.故答案为:0【点睛】本题考查了二次函数与轴的交点问题,转化为一元二次方程根的判别式求解是解题的关键.5、5【解析】【分析】先求出抛物线y= a(x-1)2+k(a、k为常数)的对称轴,然后根据A和B、C和D均关于对称轴直线x=1对称,分别求出B和D点的坐标,即可求出OB和CD的长.【详解】解:∵抛物线y=a(x-1)2+k(a、k为常数),∴对称轴为直线x=1,∵点A和点B关于直线x=1对称,且点A(-1,0),∴点B(3,0),∴OB=3,∵C点和D点关于x=1对称,且点C(0,a+k),∴点D(2,a+k),∴CD=2,∴线段OB与线段CD的长度和为5,故答案为5.【点睛】本题主要考查了二次函数的图象与性质,二次函数与与坐标轴交点的知识,解答本题的关键求出抛物线y=a(x-1)2+k(a、k为常数)的对称轴为x=1,此题难度不大.三、解答题1、 (1)(2)18(3)1或5【解析】【分析】(1)把点,,代入二次函数解析式:y=ax2+bx+c,求出即可;(2)分别求出A、B、C、P四点的坐标.利用S四边形ACBP=S△ABP+S△ABC进行计算;(3)观察抛物线的图像可直接得到结果.(1)解:(1)设二次函数的表达式为(,,为常数,),由题意知,该函数图象经过点,,,得,解得,∴二次函数的表达式为.(2)解:∵当y=0时,解得:x1=1,x2=5∴点A坐标为(1,0)、点B坐标为(5,0);当x=0时,y=-5,∴点C坐标为(0,-5);把化为y=-(x-3)2+4∴点P坐标为(3,4);由题意可画图如下: ∴S四边形ACBP=S△ABP+S△ABC==18,故答案是:18;(3)由图像知:将抛物线向左平移1个单位长度或5个单位长度,抛物线经过原点.故:m=1或.【点睛】本题考查了待定系数法求二次函数的解析式:二次函数的解析式可设为一般式、顶点式或交点式.也考查了二次函数的性质.解题的关键是掌握数形结合能力.2、 (1)全体实数;(2)0;(3)答案见解析;(4)①4;②z≥4或0≤z≤1【解析】【分析】(1)根据函数解析式为整式,即可得函数自变量的取值范围;(2)观察表格知,函数关于直线x=2对称,从而由对称性即可求得m的值;(3)用光滑的曲线顺次连接各点即得函数图象;(4)①根据图象即可求得y的最大值;②观察图象即可求得z的取值范围.(1)(1)函数y=|ax2+bx+c|的自变量的取值范围为全体实数.故答案为:全体实数.(2)观察表格可知,函数关于直线x=2对称,与x轴交于(0,0)和(4,0),∴x=4时,m=0.故答案为:0.(3)函数图象如图所示:(4)①观察图象可知,当0≤x≤4时,y的最大值是4.故答案为:4.②观察图象可知,当z≥4或0≤z≤1时,y随x的增大而增大.故答案为:z≥4或0≤z≤1.【点睛】本题考查了函数及其图象、二次函数的图象与性质,关键是观察表格,数形结合.3、 (1)AD=20米;(2)当x=100时,S最大=5000米2.【解析】【分析】(1)设AD=x,AB=(200-x)÷2=100-,根据长方形面积公式列方程,解方程,根据墙长得出AD=20米;(2)矩形隔离区ABCD面积用S表示,根据长方形面积公式列出面积函数S=然后配方为S即可.(1)解:设AD=x,AB=(200-x)÷2=100-,∴根据题意得:,整理得,解得:,∵a=30,∴AD=20米;(2)解:矩形隔离区ABCD面积用S表示,则S=,∵a=150>100,∴当x=100时,S最大=5000米2.【点睛】本题考查长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题,掌握长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题是解题关键.4、 (1)y=﹣2t+200(1≤t≤80,t为整数)(2)第30天的日销售利润最大,最大利润为2450元【解析】【分析】(1)设日销售量y与时间t的函数解析式为y=kt+b(k≠0),将(1,198)、(80,40)代入,得二元一次方程组,解得k和b的值,再代入y=kt+b即可;(2)设日销售利润为w,根据日利润等于每千克的利润乘以日销售量可得w=(p-6)y,分两种情况讨论:①当1≤t≤40时,②当41≤t≤80时.(1)解:设日销售量y与时间t的函数解析式为y=kt+b(k≠0),将(1,198)、(80,40)代入,得:,解得:,∴日销售量y与时间t的函数表达式为y=-2t+200(1≤t≤80,t为整数);(2)解:设日销售利润为w元,则w=(p-6)y,①当1≤t≤40时,w=(t+16-6)(-2t+200)=-(t-30)2+2450,∵-<0,∴当t=30时,w有最大值,最大值为2450元;②当41≤t≤80时,w=(-t+46-6)(-2t+200)=(t-90)2-100,∵1>0,∴当t≤90时,w随t的增大而减小,∴当t=41时,w有最大值,最大值=(41-90)2-100=2301,∵2450>2301,∴第30天的日销售利润最大,最大利润为2450元.【点睛】本题考查了二次函数在销售问题中的应用,同时本题还考查了待定系数法求一次函数的解析式,解题关键是根据等量关系写出函数解析式.5、 (1);(2)铅球距离地面的最大高度为【解析】【分析】(1)把(10,0)代入函数解析式中,即可求得c的值;(2)直接利用对称轴的值,代入函数关系式进而得出答案.(1)把(10,0)代入函数解析式中得:解得:(2)当x=﹣时,y最大=所以铅球距离地面的最大高度为3m.【点睛】本题考查了二次函数的图象与性质,掌握二次函数的图象与性质是关键,属于基础题.
相关试卷
这是一份2021学年第30章 二次函数综合与测试优秀课时训练,共28页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品课时练习,共31页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀同步测试题,共37页。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)