开学活动
搜索
    上传资料 赚现金

    2022年冀教版九年级数学下册第三十章二次函数课时练习试题(含详细解析)

    2022年冀教版九年级数学下册第三十章二次函数课时练习试题(含详细解析)第1页
    2022年冀教版九年级数学下册第三十章二次函数课时练习试题(含详细解析)第2页
    2022年冀教版九年级数学下册第三十章二次函数课时练习试题(含详细解析)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试课后测评

    展开

    这是一份冀教版九年级下册第30章 二次函数综合与测试课后测评,共27页。试卷主要包含了已知点,,都在函数的图象上,则,抛物线y=﹣2,抛物线的顶点为等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,边上一动点,沿的路径移动,过点,垂足为.设的面积为,则下列能大致反映函数关系的图象是(       A. B.C. D.2、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,满足公式:表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是(       A. B. C. D.1秒3、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,其中.得出结论:①;②;③;④.上述结论正确的有(       )个.A.1 B.2 C.3 D.44、已知点都在函数的图象上,则(       A. B. C. D.5、抛物线y=﹣2(x﹣3)2﹣4的对称轴是(  )A.直线x=3 B.直线x=﹣3 C.直线x=4 D.直线x=﹣46、已知是抛物线上的点,且,下列命题正确的是(       A.若,则 B.若,则C.若,则 D.若,则7、抛物线的顶点为(       A. B. C. D.8、若关于的一元二次方程的两根分别为,则二次函数的对称轴为直线(     A. B. C. D.9、如图,二次函数yax2+bx+cabc为常数,且a0)的图象与x轴的一个交点坐标为(﹣10),对称轴为直线x1.下列结论:x0时,yx的增大而增大;2a+b04a+2b+c0关于x的方程ax2+bx+c+a0有两个不相等的实数根.其中,所有正确结论的序号为(  )A.②③ B.②④ C.①②③ D.②③④10、一次函数与二次函数的图象交点(  )A.只有一个 B.恰好有两个C.可以有一个,也可以有两个 D.无交点第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若抛物线轴交于原点,则的值为 __.2、已知抛物线轴交于AB两点,对称轴与抛物线交于C,与轴交于点D,圆C的半径为1.8,G为圆C上一动点,PAG的中点,则DP的最大值为_________.     3、把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为________.4、如果抛物线的顶点在轴上,那么的值是_________.5、已知抛物线y=(x﹣1)2有点A(0,y1)和B(3,y2),则y1___y2.(用“>”,“<”,“=”填写)三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,已知点的坐标为,且,抛物线)图象经过三点.(1)求抛物线的解析式;(2)是抛物线对称轴上的一点,当的值最小时,求点坐标;(3)若点是直线下方的抛物线上的一个动点,作于点,当的值最大时,求此时点的坐标及的最大值.2、某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)求yx的函数关系式;(2)求公司销售该商品获得的最大日利润.3、已知二次函数yax2﹣4ax+3a(1)求该二次函数图象的对称轴以及抛物线与x轴的交点坐标;(2)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;(3)若对于该抛物线上的两点Px1y1),Qx2y2),当tx1t+1,x2≥5时,均满足y1y2,请直接写出t的最大值.4、如图,要用篱笆(虚线部分)围成一个矩形苗圃ABCD,其中两边靠的墙足够长,中间用平行于AB的篱笆EF隔开,已知篱笆的总长度为18米,设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y).(1)求yx的函数关系式;(2)求所围矩形苗圃ABCD的面积最大值;5、已知二次函数的图像经过点(1)求二次函数的表达式;(2)若二次函数的图像与轴交于两点,与轴交于点,其顶点为,则以为顶点的四边形的面积为__________;(3)将二次函数的图像向左平移个单位后恰好经过坐标原点,则的值为__________. -参考答案-一、单选题1、D【解析】【分析】分两种情况分类讨论:当0≤x≤6.4时,过C点作CHABH,利用ADE∽△ACB得出yx的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用BDE∽△BCA得出yx的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【详解】解:∵BC=CA点作CHABH∴∠ADE=∠ACB=90°,CH=4.8,AH=当0≤x≤6.4时,如图1,∵∠A=∠A,∠ADE=∠ACB=90°,∴△ADE∽△ACB,即,解得:x=y=x=x2当6.4<x≤10时,如图2,∵∠B=∠B,∠BDE=∠ACB=90°,∴△BDE∽△BCA,解得:x=y=x=故选:D【点睛】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出yx的函数关系式.2、A【解析】【分析】根据已知得到函数关系式,将h=3代入,求出t值的差即为答案.【详解】解:由题意得h=3时,解得∴球不低于3米的持续时间是1-0.6=0.4(秒),故选:A.【点睛】此题考查了二次函数的实际应用,解一元二次方程,正确理解题中各字母的值,代入求出函数解析式解决问题是解题的关键.3、C【解析】【分析】由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.【详解】解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴, 故①符合题意; 二次函敞的图象过点,结合图象可得:在抛物线上, 抛物线的对称轴为: 故②符合题意; 二次函敞的顶点坐标为:结合图象可得: 故③不符合题意;时, 又由图象可得:时, 解得: 故④符合题意;综上:符合题意的有:①②④故选C【点睛】本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.4、C【解析】【分析】把点的坐标分别代入函数解析式可分别求得,再比较其大小即可.【详解】解:都在函数的图象上,故选:C.【点睛】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.5、A【解析】【分析】直接利用抛物线y=﹣2(x﹣3)2﹣4,求得对称轴方程为:x=3.【详解】解:抛物线y=﹣2(x﹣3)2﹣4的对称轴方程为:直线x=3,故选:A.【点睛】本题考查了二次函数的性质与图象,解题的关键是掌握:二次函数的顶点式与对称轴的关系.6、A【解析】【分析】根据抛物线解析式可确定对称轴为,根据点与对称轴的距离的大小以及函数值的大小关系即可判断的符号,即开口方向【详解】解:∵的对称轴为,且∴若离对称轴远,则抛物线的开口朝下,即,故A正确离对称轴远,则抛物线的开口朝上,即,故C不正确对于B,D选项不能判断的符号故选A【点睛】本题考查了二次函数图象的性质,掌握的性质是解题的关键.7、B【解析】【分析】根据抛物线的顶点式y=ax-h2+k可得顶点坐标是(hk).【详解】解:∵y=2(x-1)2+3,∴抛物线的顶点坐标为(1,3),故选:B.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=ax-h2+k,顶点坐标是(hk).8、C【解析】【分析】根据两根之和公式可以求出对称轴公式.【详解】解:∵一元二次方程ax2bxc=0的两个根为−2和4,x1x2=− =2.∴二次函数的对称轴为x=−×2=1.故选:C.【点睛】本题考查了求二次函数的对称轴,要求熟悉二次函数与一元二次方程的关系和两根之和公式,并熟练运用.9、D【解析】【分析】根据二次函数的图象及性质即可判断.【详解】解:由函数图象可知,抛物线开口向上,a>0,∵对称轴为直线x=1,抛物线与x轴的一个交点坐标为(﹣1,0),∴抛物线与x轴另一个交点坐标为(3,0),∴当x>1时,yx的增大而增大,故①错误;∵﹣=1,b=﹣2a∴2a+b=0,故②正确;x=2时,y=4a+2b+c<0,故③正确;x=﹣1时,yab+c=3a+c=0,c=﹣3a∴﹣ac∴直线y=﹣a与抛物线yax2+x+c有2个交点,∴关于x的方程ax2+bx+c=﹣a有两个不相等的实数根,即关于a的方程ax2+bx+c+a=0有两个不相等的实数根,故④正确;正确的有②③④,故选:D.【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系,本题属于中等题型.10、B【解析】【分析】联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.【详解】解:联立一次函数和二次函数的解析式可得:整理得:有两个不相等的实数根的图象交点有两个故选:B.【点睛】本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解二、填空题1、-3【解析】【分析】根据函数图象经过原点时,,代入即可求出的值.【详解】解:抛物线轴交于原点,时,故答案为:【点睛】本题考查了二次函数的性质,掌握函数图象经过原点,即当时,是解决问题的关键.2、【解析】【分析】如图,连接BG.利用三角形的中位线定理证明DP=BG,求出BG的最大值,即可解决问题.【详解】解:如图,连接BGAP=PGAD=DBDP=BG∴当BG的值最大时,DP的值最大,C(5,),B(9,0),BC==当点GBC的延长线上时,BG的值最大,最大值=+DP的最大值为故答案为:【点睛】本题考查二次函数图象上的点的坐标特征,三角形中位线定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.3、【解析】【分析】根据“左加右减、上加下减”的平移原则进行解答即可.【详解】解:抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为故答案为:(或【点睛】本题考查了二次函数的平移,掌握函数平移规律是解题的关键.4、2【解析】【分析】把二次函数一般式转化为顶点式,求出其顶点坐标,再根据顶点在x轴上确定其纵坐标为0,进而求出m的值.【详解】解:∵∴二次函数顶点坐标为∵顶点在x轴上,m=2.故答案为:2.【点睛】本题考查二次函数的一般式转化为顶点式的方法和坐标轴上点的坐标特征,熟练掌握以上知识点是解题关键.5、<【解析】【分析】分别把AB点的横坐标代入抛物线解析式求解即可.【详解】解:x=0时,y1=(0﹣1)2=1,x=3时,y3=(3﹣1)2=4,y1y2故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征,求出相应的函数值是解题的关键.三、解答题1、 (1)(2)();(3)点P(2,-6),PD最大值为【解析】【分析】(1)根据点B的坐标,得出OB的长,进而根据即可得到OA、OC的长,利用待定系数法求出函数解析式;(2)利用配方法求出抛物线的对称轴,连接AC,交对称轴于一点即为点M,此时的值最小,求出直线AC的解析式,当时求出y的值即可得到点M的坐标;(3)过点PPH平行于y轴,交AC于点H,根据等腰直角三角形的性质求出∠OAC=∠OCA=45°,根据平行线的性质求出∠PHD=∠OCA=45°,设点Px),则点Hxx-4),根据正弦函数定义得到,根据函数的性质得解问题.(1)解:∵点的坐标为OB=1,OA=OC=4,∴点A的坐标为(4,0),点C的坐标为(0,-4),将点A、B、C的坐标代入中,得,解得∴抛物线的解析式为(2)解:∵∴抛物线的对称轴为直线连接AC,交对称轴于一点即为点M,此时的值最小,设直线AC的解析式为,解得∴直线AC的解析式为y=x-4,时,∴点M的坐标为();(3)解:过点PPH平行于y轴,交AC于点HOA=OC∴∠OAC=∠OCA=45°,∴∠PHD=∠OCA=45°,设点Px),则点Hxx-4),PD有最大值,当x=2时,PD最大值为此时点P(2,-6).【点睛】此题考查了待定系数法求抛物线解析式,抛物线的对称轴,化一般式为顶点式,最短路径问题,二次函数的性质,锐角三角函数,正确掌握抛物线的各知识点是解题的关键,这是一道二次函数与一次函数的综合题.2、 (1)y=-x+120;(2)最大日利润是2025元.【解析】【分析】(1)根据题中所给的表格中的数据,利用待定系数法可得其关系式,也可以根据关系直接写出关系式;(2)根据利润等于每件的利润乘以件数,再利用配方法求得其最值.(1)解:设解析式为y=kx+b将(40,80)和(60,60)代入,可得解得:所以yx的关系式为y=-x+120;(2)解:设公司销售该商品获得的日利润为w元,w=(x-30)y=(x-30)(-x+120)=-x2+150x-3600=-(x-75)2+2025,x-30≥0,-x+120≥0,∴30≤x≤120,∵-1<0,∴抛物线开口向下,函数有最大值,∴当x=75时,w最大=2025,答:当销售单价是75元时,最大日利润是2025元.【点睛】本题考查的是有关函数的问题,涉及到的知识点有一次函数解析式的求解,二次函数的应用,在解题的过程中,注意正确找出等量关系是解题的关键,属于基础题目.3、 (1)对称轴x=2;交点坐标为(1,0)和(3,0)(2)10(3)4【解析】【分析】(1)解析式化成顶点式即可求得对称轴,令y=0,得到关于x的方程,解方程即可求得抛物线与x轴的交点坐标;(2)构建方程求出a的值,再求出△OPQ的面积即可解决问题;(3)当tx1t+1,x2≥5时,均满足y1y2,推出当抛物线开口向下,点P在点Q左边或重合且在点Q关于对称轴对称点的右边时,满足条件,可得t+1≤5且t≥﹣1,由此即可解决问题.(1)解:∵yax2﹣4ax+3aax﹣2)2a∴对称轴x=2;y=0,则ax2﹣4ax+3a=0,解得x=1或3,∴抛物线与x轴的交点坐标为(1,0)和(3,0);(2)解:∵该二次函数的图象开口向下,且对称轴为直线x=2,∴当x=2时,y取到在1≤x≤4上的最大值为2,即P(2,2),∴4a﹣8a+3a=2,a=﹣2,y=﹣2x2+8x﹣6,∵当1≤x≤2时,yx的增大而增大,∴当x=1时,y取到在1≤x≤2上的最小值0.∵当2≤x≤4时,yx的增大而减小,∴当x=4时,y取到在2≤x≤4上的最小值﹣6.∴当1≤x≤4时,y的最小值为﹣6,即Q(4,﹣6).∴△OPQ的面积为4×(2+6)﹣2×2÷2﹣4×6÷2﹣(4﹣2)×(2+6)÷2=10;(3)解:∵当tx1t+1,x2≥5时,均满足y1y2∴当抛物线开口向下,点P在点Q左边或重合且在点Q关于对称轴对称点的右边时,满足条件,t+1≤5且t≥﹣1,∴﹣1≤t≤4,t的最大值为4.【点睛】本题考查二次函数的图象和性质,二次函数图象上点的坐标特征,函数的最值问题等知识,解题的关键是读懂题意、灵活运用所学知识解决问题.4、 (1)y=﹣2x2+18x(2)m2【解析】【分析】(1)设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y),则,根据矩形的面积公式求解即可;(2)根据顶点坐标公式计算即可求解(1)设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y),则根据题意得:yx(18﹣2x)=﹣2x2+18x(2)二次函数y=﹣2x2+18x(0<x<9),a=﹣2<0,∴二次函数图象开口向下,且当x=﹣时,y取得最大值,最大值为y×(18﹣2×)=(m2);【点睛】本题考查了一元二次函数的应用,用代数式表示出是解题的关键.5、 (1)(2)18(3)1或5【解析】【分析】(1)把点代入二次函数解析式:y=ax2+bx+c,求出即可;(2)分别求出ABCP四点的坐标.利用SACBP=SABP+SABC进行计算;(3)观察抛物线的图像可直接得到结果.(1)解:(1)设二次函数的表达式为为常数,),由题意知,该函数图象经过点,得解得∴二次函数的表达式为.(2)解:∵y=0时,解得:x1=1,x2=5∴点A坐标为(1,0)、点B坐标为(5,0);x=0时,y=-5,∴点C坐标为(0,-5);化为y=-(x-3)2+4∴点P坐标为(3,4);由题意可画图如下: SACBP=SABP+SABC==18,故答案是:18;(3)由图像知:将抛物线向左平移1个单位长度或5个单位长度,抛物线经过原点.故:m=1或【点睛】本题考查了待定系数法求二次函数的解析式:二次函数的解析式可设为一般式、顶点式或交点式.也考查了二次函数的性质.解题的关键是掌握数形结合能力. 

    相关试卷

    2021学年第30章 二次函数综合与测试优秀课时训练:

    这是一份2021学年第30章 二次函数综合与测试优秀课时训练,共28页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试精品复习练习题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品复习练习题,共25页。试卷主要包含了对于二次函数,下列说法正确的是等内容,欢迎下载使用。

    数学九年级下册第30章 二次函数综合与测试测试题:

    这是一份数学九年级下册第30章 二次函数综合与测试测试题,共29页。试卷主要包含了二次函数y=ax2﹣4ax+c,抛物线的对称轴是,根据表格对应值等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map