


数学九年级下册第30章 二次函数综合与测试测试题
展开九年级数学下册第三十章二次函数专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知关于的二次函数,当时,随的增大而减小,则实数的取值范围是( )
A. B. C. D.
2、已知二次函数y=ax2-2ax-1(a是常数,a≠0),则下列命题中正确的是( )
A.若a=1,函数图象经过点(-1,1) B.若a=-2,函数图象与x轴交于两点
C.若a<0,函数图象的顶点在x轴下方 D.若a>0且x≥1,则y随x增大而减小
3、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论正确的是( )
A.ac>0 B.a+b=1 C.4ac﹣b2≠4a D.a+b+c>0
4、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
5、抛物线的对称轴是( )
A.直线 B.直线 C.直线 D.直线
6、已知二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论错误的是( )
A. B. C. D.
7、根据表格对应值:
x | 1.1 | 1.2 | 1.3 | 1.4 |
ax2+bx+c | ﹣0.59 | 0.84 | 2.29 | 3.76 |
判断关于x的方程ax2+bx+c=2的一个解x的范围是( )
A.1.1<x<1.2 B.1.2<x<1.3 C.1.3<x<1.4 D.无法判定
8、下列函数中,随的增大而减小的函数是( )
A. B. C. D.
9、若函数,则当函数y=15时,自变量的值是( )
A. B.5 C.或5 D.5或
10、下列函数中,二次函数是( )
A.y=﹣3x+5 B.y=x(4x﹣3)
C.y=2(x+4)2﹣2x2 D.y=
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、请写出一个开口向下,与轴交点的纵坐标为3的抛物线的函数表达式__.
2、抛物线与y轴的交点坐标为_________.
3、某商品进价为26元,当每件售价为50元时,每天能售出40件,经市场调查发现每件售价每降低1元,则每天可多售出2件,当店里每天的利润要达到最大时,店主应把该商品每件售价降低______元.
4、已知二次函数y1=x2-2x+b的图象过点(-2,5),另有直线y2=5,则符合条件y1>y2的x的范围是________.
5、已知二次函数的图象顶点坐标是,还经过点,它的图象与轴交于、两点,则线段的长为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,Rt中,.点P从点A出发,沿射线方向以每秒1个单位长度的速度向终点B运动,当点P不与点A重合时,将线段绕点P旋转使(点在点P右侧),过点作交射线于点M,设点P运动的时间为t(秒).
(1)的长为___________(用含t的代数式表示)
(2)当落在的角平分线上时,求此时t的值.
(3)设与重叠部分图形的面积为S(平方单位),求S关于t的函数关系式.并求当t为何值时,S有最大值,最大值为多少?
2、某商店销售甲、乙两种礼品,每件利润分别为20元、10元,每天卖出件数分别为40件、80件.为适应市场需求,该店决定降低甲种礼品的售价,同时提高乙种礼品的售价.售卖时发现,甲种礼品单价每降1元可多卖4件,乙种礼品单价每提高1元就少卖2件.若每天两种礼品共卖出140件,则每天销售的最大利润是多少?
(1)分析:设甲种礼品每件降低了x元,填写表格(用含x的式子表示,并化简);
| 调价后的每件利润 | 调价后的销售量 |
甲种礼品 | ① | |
乙种礼品 | ③ | ② |
(2)解答:
3、某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间t(天)之间的函数关系为p=,且t为整数,日销售量y(千克)与时间t(天)之间的函数关系如图所示.
(1)求日销售量y与时间t的函数表达式.
(2)哪一天的日销售利润最大?最大利润是多少?
4、借鉴我们已有研究函数的经验,探索函数y=|x2﹣2x﹣3|的图像与性质,研究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | m | 0 | 3 | n | 3 | 0 | 5 | … |
其中,m= ,n= ;
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出函数图像;
(3)观察函数图像:
①写出该函数的一条性质 ;
②已知函数y=x+4的图像如图所示根据函数图像,直接写出不等式x+4<|x2﹣2x﹣3|的解集.(近似值保留一位小数,误差不超过0.2)
5、抛物线与x轴交和点B,交y轴于点C,对称轴为直线.
(1)求抛物线的解析式;
(2)如图,若点D为线段BC下方抛物线上一点,过点D作轴于点E,再过点E作于点F,请求出的最大值.
-参考答案-
一、单选题
1、C
【解析】
【分析】
由二次函数的性质,取得开口方向以及对称轴,进而可确定出的范围.
【详解】
解:,
抛物线开口向上,对称轴为,
当时,随的增大而减小,
在时,随的增大而减小,
,
解得,
故选:C.
【点睛】
本题考查二次函数图象性质,不等式的解法.能够得出关于的不等式,并正确求解不等式是解题关键.
2、B
【解析】
【分析】
根据二次函数的图象与性质逐项分析即可.
【详解】
A、当a=1,x=-1时,,故函数图象经过点(-1,2),不经过点(-1,1),故命题错误;
B、a=-2时,函数为,令y=0,即,由于,所以方程有两个不相等的实数根,从而函数图象与x轴有两个不同的交点,故命题正确;
C、当a<0时, ,其顶点坐标为,当a=−1时,顶点坐标为(1,0 ),在x轴上,故命题错误;
D、由于,抛物线的对称轴为直线x=1,当a>0且x≥1时,y随x增大而增大,故命题错误.
故选:B
【点睛】
本题考查了二次函数的图象与性质、二次函数与一元二次方程的关系,熟练掌握这些知识是解题的关键.
3、D
【解析】
【分析】
由抛物线开口方向及抛物线与轴交点位置,即可得出、,进而判断结论A;由抛物线顶点的横坐标可得出,进而判断结论B;由抛物线顶点的纵坐标可得出,进而判断结论C;由、,进而判断结论D.由此即可得出结论.
【详解】
解:A、抛物线开口向下,且与轴正半轴相交,
,,
,结论A错误,不符合题意;
B、抛物线顶点坐标为,,
,
,即,结论B错误,不符合题意;
C、抛物线顶点坐标为,,
,
,结论C错误,不符合题意;
D、,,
,结论D正确,符合题意.
故选:D.
【点睛】
本题考查了二次函数图象与系数的关系以及二次函数的性质,解题的关键是观察函数图象,逐一分析四个选项的正误.
4、C
【解析】
【分析】
根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
【详解】
解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
∵-2<0<2<3<5,
∴y3<y2<y4<y1,
若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
若y2y4<0,则y1y3<0,选项C符合题意,
若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
故选:C.
【点睛】
本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
5、C
【解析】
【分析】
抛物线的对称轴为:,根据公式直接计算即可得.
【详解】
解:,
其中:,,,
,
故选:C.
【点睛】
本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.
6、B
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:A、函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故A正确,不符合题意;
B、函数的对称轴为:x=−=1,故2a+b=0,即,图象与x轴交于点A(−1,0),
故当时,,即,故B错误,符合题意;
C、图象与x轴交于点A(−1,0),其对称轴为直线x=1,则图象与x轴另外一个交点坐标为:(3,0),故当x=2时,y=4a+2b+c>0,故C正确,不符合题意;
D、图象与x轴另外一个交点坐标为:(3,0),即x=3时,y=9a+3b+c=0,正确,不符合题意;
故选:B.
【点睛】
本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.
7、B
【解析】
【分析】
利用表中数据可知当x=1.3和x=1.2时,代数式ax2+bx+c的值一个大于2,一个小于2,从而判断当1.2<x<1.3时,代数式ax2+bx+c的值为2.
【详解】
解:当x=1.3时,ax2+bx+c=2.29,
当x=1.2时,ax2+bx+c=0.84,
∵0.84<2<2.29,
∴方程解的范围为1.2<x<1.3,
故选:B
【点睛】
本题考查估算一元二次方程的近似解,解题关键是观察函数值的变化情况.
8、B
【解析】
【分析】
根据一次函数,反比例函数,二次函数,正比例函数的性质逐项分析即可.
【详解】
A. ,,随的增大而增大,故A选项不符合题意.
B. ,, ,的图像位于第三象限,随的增大而减小,故B选项符合题意;
C. ,,对称轴为轴,在对称轴的左边,随的增大而增大,在对称轴的右边,随的增大而减小,故C选项不符合题意;
D. ,,随的增大而增大,故D选项不符合题意;
故选B.
【点睛】
本题考查了一次函数,反比例函数,二次函数,正比例函数的性质,掌握以上性质是解题的关键.
9、D
【解析】
【分析】
根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.
【详解】
解:当x<3时,
令2x2-3=15,
解得x=-3;
当x≥3时,
令3x=15,
解得x=5;
由上可得,x的值是-3或5,
故选:D.
【点睛】
本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.
10、B
【解析】
【分析】
根据二次函数的定义逐个判断即可.
【详解】
解:A.函数是一次函数,不是二次函数,故本选项不符合题意;
B.是二次函数,故本选项符合题意;
C.是一次函数,不是二次函数,故本选项不符合题意;
D.不是二次函数,故本选项不符合题意;
故选:B.
【点睛】
本题考查了二次函数的定义,解题的关键是掌握:形如、、为常数,的函数,叫二次函数.
二、填空题
1、
【解析】
【分析】
首先根据开口向下得到二次项系数小于0,然后根据与轴的交点坐标的纵坐标为3得到值即可得到函数的解析式.
【详解】
解:开口向下,
中,
与轴的交点纵坐标为3,
,
抛物线的解析式可以为:(答案不唯一).
故答案为:(答案不唯一).
【点睛】
本题考查了二次函数的性质,解题的关键是熟知二次函数中各项系数的作用.
2、
【解析】
【分析】
根据二次函数图像的性质,时,通过计算即可得到答案.
【详解】
当时,
∴抛物线与y轴的交点坐标为
故答案为:.
【点睛】
本题考查了二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.
3、2
【解析】
【分析】
设每件商品售价降低元,则每天的利润为:,然后求解计算最大值即可.
【详解】
解:设每件商品售价降低元
则每天的利润为:,
∵
∴当时,最大为968元
故答案为2.
【点睛】
本题考查了一元二次函数的应用.解题的关键在于确定函数解析式.
4、x<−2或x>4## x>4或x<-2
【解析】
【分析】
先根据抛物线经过点(-2,5),求出函数解析式,再求出抛物线的对称轴,根据函数的对称性,找到抛物线经过另一点(4,5),从而得出结论.
【详解】
解:∵二次函数y1=x2-2x+b的图象过点(-2,5),
∴5=(-2)2-2×(-2)+b,
解得:b=-3,
∴二次函数解析式y1=x2-2x-3,
∴抛物线开口向上,对称轴为x=-=1,
∴抛物线过点(4,5),
∴符合条件y1>y2的x的范围是x<-2或x>4.
故答案为:x<-2或x>4.
【点睛】
本题考查了二次函数与不等式(组),关键是对二次函数的图象与性质的掌握和应用.
5、6
【解析】
【分析】
求出抛物线解析式,再求出、两点横坐标,利用坐标求出线段的长即可.
【详解】
解:二次函数的图象顶点坐标是,
设抛物线解析式为,把代入得,
,解得,
抛物线解析式为,
当y=0时,,解得,,,
线段的长为2+4=6;
故答案为:6.
【点睛】
本题考查了求二次函数解析式和抛物线与x轴交点,解题关键是求出抛物线解析式,熟练求出抛物线与x轴交点横坐标.
三、解答题
1、 (1)
(2)
(3),当时,S有最大值
【解析】
【分析】
(1)先利用勾股定理求出,然后证明,得到,即,则,,即可得到;
(2)延长交BC于D,由,得到,,则
再由在∠ABC的角平分线上,,,得到,则,由此求解即可;
(3)先求出当点正好落在BC上时,,然后讨论当△ABC与重叠部分即为,然后求出当点M恰好与B重合时,,讨论当时,如图3所示,△ABC与重叠部分即为四边形PMTS,当时,如图4所示,,△ABC与重叠部分即为△BPS,由此求解即可.
(1)
解:由旋转的性质可得,
∵在Rt△ABC,∠ACB=90°,AC=4,BC=3,
∴,
∵,,
∴,,
∴,
∴,即,
∴,,
∴;
(2)
解:如图所示,延长交BC于D,
∵∠ACB=90°,
∴AC⊥BC,
∵,
∴,,
∴
∵在∠ABC的角平分线上,,,
∴,
∴,
∴,
∴,
又∵,
∴,
解得;
(3)
解:如图2所示,当点正好落在BC上时,
∴,
∵,
∴,
∴,即,
∴,
又∵,
∴,
解得,
当,如图1所示,△ABC与重叠部分即为,
∴此时;
当点M恰好与B重合时,此时,
∴,
解得,
当时,如图3所示,△ABC与重叠部分即为四边形PMTS,
∴,
同理可证,
∴,即,,
∴,
∴,
∵,
∴,
∴即,
∴,
∴,
∴;
当时,如图4所示,,△ABC与重叠部分即为△BPS,
同理可证,
∴,即,
∴,,
∴,
∴综上所述,
∴,
∴由二次函数的性质可知,
∴当时,S有最大值.
【点睛】
本题主要考查了相似三角形的性质与判定,勾股定理,角平分线的性质,熟知相关知识是解题的关键.
2、 (1)①,②,③
(2)每天获得的最大利润为元.
【解析】
【分析】
(1)设甲种礼品每件降低了x元,则调价后的销售量为原销量加上增加的销量,可得乙的销量为件,再求解乙调价后的利润即可;
(2)设每天的销售利润为元,再利用总利润等于甲礼品的利润加上乙礼品的利润,可得函数关系式,再利用二次函数的性质可得答案.
(1)
解:设甲种礼品每件降低了x元,则调价后的销售量为:件,
乙种礼品调价后的销售量为:件,
乙种礼品调价后的利润为:元,
填表如下:
| 调价后的每件利润 | 调价后的销售量 |
甲种礼品 |
| |
乙种礼品 |
|
|
(2)
解:设每天的销售利润为元,则
当时,
(元)
所以每天获得的最大利润为元.
【点睛】
本题考查的是列代数式,二次函数的实际应用,理解题意,列出二次函数的关系式是解本题的关键.
3、 (1)y=﹣2t+200(1≤t≤80,t为整数)
(2)第30天的日销售利润最大,最大利润为2450元
【解析】
【分析】
(1)设日销售量y与时间t的函数解析式为y=kt+b(k≠0),将(1,198)、(80,40)代入,得二元一次方程组,解得k和b的值,再代入y=kt+b即可;
(2)设日销售利润为w,根据日利润等于每千克的利润乘以日销售量可得w=(p-6)y,分两种情况讨论:①当1≤t≤40时,②当41≤t≤80时.
(1)
解:设日销售量y与时间t的函数解析式为y=kt+b(k≠0),
将(1,198)、(80,40)代入,得:
,
解得:,
∴日销售量y与时间t的函数表达式为y=-2t+200(1≤t≤80,t为整数);
(2)
解:设日销售利润为w元,则w=(p-6)y,
①当1≤t≤40时,
w=(t+16-6)(-2t+200)=-(t-30)2+2450,
∵-<0,
∴当t=30时,w有最大值,最大值为2450元;
②当41≤t≤80时,
w=(-t+46-6)(-2t+200)=(t-90)2-100,
∵1>0,
∴当t≤90时,w随t的增大而减小,
∴当t=41时,w有最大值,最大值=(41-90)2-100=2301,
∵2450>2301,
∴第30天的日销售利润最大,最大利润为2450元.
【点睛】
本题考查了二次函数在销售问题中的应用,同时本题还考查了待定系数法求一次函数的解析式,解题关键是根据等量关系写出函数解析式.
4、 (1)5,4
(2)见解析
(3)①图象具有对称性,对称轴是直线x=1;②x<-1.6或x>4.3
【解析】
【分析】
(1)把x=-2和x=1分别代入y=|x2-2x-3|,即可求得;
(2)描点、连线画出图象即可;
(3)①根据图象即可求得;
②根据图象即可求得.
【小题1】
解:把x=-2代入y=|x2-2x-3|,得y=5,
∴m=5,
把x=1代入y=|x2-2x-3|,得y=4,
∴n=4,
故答案为:5,4;
【小题2】
如图所示;
【小题3】
①函数的性质:图象具有对称性,对称轴是直线x=1;
故答案为:图象具有对称性,对称轴是直线x=1;
②由图象可知,不等式x+4<|x2-2x-3|的解集为x<-1.6或x>4.3.
【点睛】
本题考查了二次函数图象和性质,二次函数图象上点的坐标特征,一次函数与一次不等式,注意利用数形结合的思想是解此题的关键.
5、 (1)
(2)
【解析】
【分析】
(1)根据二次函数的对称轴及过一点,建立等式进行求解;
(2)先证明出是等腰三角形,再利用二次函数的性质结合配方法求解即可.
(1)
解:对称轴为,
把代入得:,
解得:,
抛物线的解析式为;
(2)
解:设点D的坐标为,
点D在BC的下方,
,
,
,
,
,
是等腰三角形,
,
轴,
E的坐标为,
,
,
,
当时,的最大值是.
【点睛】
本题考查了求解二次函数的解析式、二次函数的性质,等腰三角形的判定及性质,解题的关键是求解出解析式.
2021学年第30章 二次函数综合与测试优秀课时训练: 这是一份2021学年第30章 二次函数综合与测试优秀课时训练,共28页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。
数学九年级下册第30章 二次函数综合与测试优秀复习练习题: 这是一份数学九年级下册第30章 二次函数综合与测试优秀复习练习题,共24页。试卷主要包含了抛物线的顶点坐标为,若点A等内容,欢迎下载使用。
初中数学冀教版九年级下册第30章 二次函数综合与测试精品课时练习: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品课时练习,共31页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。