初中数学冀教版九年级下册第30章 二次函数综合与测试练习题
展开
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试练习题,共32页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、将二次函数y=2x2的图像先向左平移2个单位,再向上平移3个单位,得到的函数图像的表达式为( )
A.y=2(x+2)2+3 B.y=2(x-2)2+3 C.y=2(x+2)2-3 D.y=2(x-2)2-3
2、对于抛物线下列说法正确的是( )
A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点
3、抛物线的顶点坐标为( )
A.(﹣4,﹣5) B.(﹣4,5) C.(4,﹣5) D.(4,5)
4、若二次函数与轴的一个交点为,则代数式的值为( )
A. B. C. D.
5、如图,在矩形ABCD中,,,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,的面积为S,则下列图象能大致反映S与t之间函数关系的是( )
A. B.
C. D.
6、已知二次函数的图象经过,,则b的值为( )
A.2 B. C.4 D.
7、二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是( )
A. B.y≤2 C.y<2 D.y≤3
8、抛物线的对称轴是( )
A.直线 B.直线 C.直线 D.直线
9、已知二次函数的图象如图所示,根据图中提供的信息,可求得使成立的x的取值范围是( )
A. B. C. D.或
10、若二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,1),(4,6),(3,1),则( )
A.y≤3 B.y≤6 C.y≥-3 D.y≥6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若抛物线与轴交于原点,则的值为 __.
2、已知二次函数,当y随x的增大而增大时,自变量x的取值范围是______.
3、已知二次函数y1=x2-2x+b的图象过点(-2,5),另有直线y2=5,则符合条件y1>y2的x的范围是________.
4、已知点A(x1,y1)、B(x2,y2)为函数y=﹣2(x﹣1)2+3的图象上的两点,若x1<x2<0,则y1_____y2(填“>”、“=”或“<”),
5、已知二次函数,当时,函数的值是_________.
三、解答题(5小题,每小题10分,共计50分)
1、已知如图,二次函数的图像与x轴相交于点A、B两点,与y轴相交于点C,连接AC、BC,,抛物线的顶点为D.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点E,当取得最小值时,E点坐标为________;此时AE与BC的位置关系是________,________;
(3)抛物线对称轴右侧的函数图像上是否存在点M,满足,若存在求M点的横坐标;若不存在,请说明理由;
(4)若抛物线上一动点Q,当时,直接写出Q点坐标________.
2、如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,平行于x的直线与抛物线交于点A,B,若△AMB为等腰直角三角形,则抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的“准碗形”,线段AB称为碗宽,点M到线段AB的距离称为碗高.
(1)抛物线y=x2对应的碗宽为 ;
(2)抛物线y=ax2(a>0)对应的碗宽为 ;抛物线y=a(x﹣2)2+3(a>0)对应的碗高为 ;
(3)已知抛物线y=ax2﹣4ax﹣(a>0)对应的碗高为3.
①求碗顶M的坐标;
②如图2,将“准碗形AMB”绕点M顺时针旋转30°得到“准碗形”.过点作x轴的平行线交准碗形于点C,点P是线段上的动点,过点P作y轴的平行线交准碗形A'MB'于点Q.请直接写出线段PQ长度的最大值.
3、习近平总书记曾强调“利用互联网拓宽销售渠道,多渠道解决农产品卖难问题.” 2021年黑龙江省粮食生产再获丰收,某村通过直播带货对产出的生态米进行销售.每袋成本为40元,物价部门规定每袋售价不得高于55元.市场调查发现,若每袋以45元的价格销售,平均每天销售105袋,而销售价每涨价1元,平均每天就可以少售出3袋.
(1)求该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式;
(2)若每日销售利润达到900元,售价为多少元?
(3)当每袋大米的销售价为多少元时,可以获得最大利润?最大利润是多少?
4、如图,二次函数(m是实数,且)的图像与x轴交于A、B两点(点A在点B的左侧),其对称轴与x轴交于点C,已知点D位于第一象限,且在对称轴上,,点E在x轴的正半轴上,.连接ED并延长交y轴于点F,连接AF.
(1)求A、B、C三点的坐标(用数字或含m的式子表示);
(2)已知点Q在抛物线的对称轴上,当的周长的最小值等于,求m的值.
5、如图,抛物线与轴交于两点(A点在B点的左侧),与y轴交于点C,连接AC,BC,A点的坐标是(,0),点P是抛物线上的一个动点,其横坐标为m,且m>0.
(1)求此抛物线的解析式;
(2)若点Q是直线AC上的一个动点,且位于x轴的上方,当PQ∥y轴时,作PM⊥PQ,交抛物线于点M(点M在点P的右侧),以PQ,PM为邻边构造矩形PQNM,求该矩形周长的最小值;
(3)设抛物线在点C与点P之间的部分(含点C和P)最高点与最低点的纵坐标之差为h.
①求h关于m的函数解析式,并写出自变量m的取值范围;
②当h=16时,直接写出△BCP的面积.
-参考答案-
一、单选题
1、A
【解析】
【分析】
按照“左加右减,上加下减”的规律,即可得出平移后抛物线的解析式.
【详解】
解:抛物线y=2x2先向左平移2个单位得到解析式:y=2(x+2)2,再向上平移3个单位得到抛物线的解析式为:y=2(x+2)2+3.
故选:A.
【点睛】
本题考查了二次函数图象与几何变换,掌握抛物线解析式的变化规律:左加右减,上加下减是解题的关键.
2、D
【解析】
【分析】
根据二次函数的性质对各选项分析判断即可得解.
【详解】
解:由y=(x-1)2-2,可知,a=1>0,则抛物线的开口向上,
∴A选项不正确;
由抛物线,可知其最小值为-2,∴B选项不正确;
由抛物线,可知其顶点坐标,∴C选项不正确;
在抛物线中,△=b²-4ac=8>0,与与x轴有交点,∴D选项正确;
故选:D.
【点睛】
本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.
3、A
【解析】
【分析】
根据抛物线的顶点坐标为 ,即可求解.
【详解】
解:抛物线的顶点坐标为.
故选:A
【点睛】
本题主要考查了二次函数的图象和性质,熟练掌握抛物线的顶点坐标为是解题的关键.
4、D
【解析】
【分析】
把代入即可求出,则,进而可求出代数式的值.
【详解】
解:二次函数与轴的一个交点为,
时,,
,
,
故选:D.
【点睛】
本题主要考查抛物线与轴的交点,解题的关键是把代入求出的值.
5、D
【解析】
【分析】
分别求出点P在AD,BD上,利用三角形面积公式构建关系式,可得结论.
【详解】
解:∵四边形ABCD是矩形,
∴AD=BC=4,∠A=∠C=90°,AD∥BC,
∴∠ADB=∠DBC=60°,
∴∠ABD=∠CDB=30°,
∴BD=2AD=8,
当点P在AD上时,PE⊥BQ
S△PBQ =·BQ·PE
=•(8-2t)•(4-t)•sin60°
=(4-t)2(0<t<4),
当点P在线段BD上时,QE’⊥BP
S△PBQ=·BP·QE’
=[12-2(t-4)]•(t-)sin60°
=-t2+t-16(4<t≤8),
观察图象可知,选项D满足条件,
故选:D.
【点睛】
本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.
6、C
【解析】
【分析】
由二次函数的图象经过,,可得二次函数图象的对称轴为 再结合对称轴方程的公式列方程求解即可.
【详解】
解: 二次函数的图象经过,,
二次函数图象的对称轴为:
解得:
故选C
【点睛】
本题考查的是二次函数的对称轴方程,掌握“利用纵坐标相等的两个点求解对称轴方程”是解本题的关键.
7、A
【解析】
【分析】
根据待定系数求解析式,进而求得顶点坐标,即的最大值,进而即可求得答案
【详解】
解:∵二次函数y=ax2+bx+c图象的对称轴为,与轴的交点为,与轴的一个交点为,
∴另一交点为
设抛物线解析式为,将点代入得
解得
抛物线解析式为
则顶点坐标为
当x>0时,函数值y的取值范围是
故选A
【点睛】
本题考查了待定系数法求抛物线解析式,化为顶点式是解题的关键.
8、B
【解析】
【分析】
由抛物线解析式的顶点式即可求得抛物线的对称轴.
【详解】
抛物线的对称轴是直线,
故选:B.
【点睛】
本题考查了抛物线的图象与性质,当抛物线的解析式为时,对称轴为直线;当抛物线的解析式为时,对称轴为直线x=h.
9、D
【解析】
【分析】
根据函数图象写出y=1对应的自变量x的值,再根据判断范围即可.
【详解】
由图可知,使得时
使成立的x的取值范围是或
故选:D.
【点睛】
本题考查了二次函数与不等式,准确识图是解题的关键.
10、C
【解析】
【分析】
根据图像经过三点求出函数表达式,再根据最值的求法求出结果.
【详解】
解:∵二次函数y=ax2+bx+c经过(﹣1,1),(4,6),(3,1),
∴,
解得:,
∴函数表达式为y=x2-2x-2,开口向上,
∴函数的最小值为=,即y≥-3,
故选C.
【点睛】
本题考查了待定系数法求二次函数表达式,二次函数的最值,属于基础题,解题的关键是掌握二次函数最值的求法.
二、填空题
1、-3
【解析】
【分析】
根据函数图象经过原点时,,,代入即可求出的值.
【详解】
解:抛物线与轴交于原点,
当时,,
,
,
故答案为:.
【点睛】
本题考查了二次函数的性质,掌握函数图象经过原点,即当时,是解决问题的关键.
2、
【解析】
【分析】
函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大,进而可得自变量x的取值范围.
【详解】
解:由知函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大
∴自变量x的取值范围是
故答案为:.
【点睛】
本题考查了二次函数的图象与性质.解题的关键在于熟练把握二次函数的图象与性质.
3、x4## x>4或x<-2
【解析】
【分析】
先根据抛物线经过点(-2,5),求出函数解析式,再求出抛物线的对称轴,根据函数的对称性,找到抛物线经过另一点(4,5),从而得出结论.
【详解】
解:∵二次函数y1=x2-2x+b的图象过点(-2,5),
∴5=(-2)2-2×(-2)+b,
解得:b=-3,
∴二次函数解析式y1=x2-2x-3,
∴抛物线开口向上,对称轴为x=-=1,
∴抛物线过点(4,5),
∴符合条件y1>y2的x的范围是x<-2或x>4.
故答案为:x<-2或x>4.
【点睛】
本题考查了二次函数与不等式(组),关键是对二次函数的图象与性质的掌握和应用.
4、<
【解析】
【分析】
找到二次函数对称轴,根据二次函数的增减性即可得出结论.
【详解】
解:∵y=﹣2(x﹣1)2+3,
∴抛物线y=﹣2(x﹣1)2+3的开口向下,对称轴为x=1,
∴在x<1时,y随x的增大而增大,
∵x1<x2<0,
∴y1<y2.
故答案为:<.
【点睛】
本题考查二次函数的增减性,掌握其增减规律,找到对称轴是解本题关键.
5、-1
【解析】
【分析】
将x的值代入计算即可;
【详解】
解:当时
==-1
故答案为:-1
【点睛】
本题考查了二次函数的值,正确计算是解题的关键.
三、解答题
1、 (1)y=x2-4x+3;
(2)(2,1);AE⊥BC,;
(3)存在,M点的横坐标为或;
(4)Q点的坐标为(,)或(,) .
【解析】
【分析】
(1)求得点C的坐标和点B的坐标,利用待定系数法即可求解;
(2)连接BC交对称轴于点E,此时AE+CE取得最小值,求得直线BC的解析式,即可求得E点坐标,进一步计算即可求解;
(3)分类求解,利用tan∠ACB= tan∠BAM,求得G点坐标,利用待定系数法求得直线AG的解析式,联立方程即可求解;
(4)先求得tan∠ACO=,同(3)的方法即可求解.
(1)
解:令x=0,则y=3,
∴点C的坐标为(0,3),即OC=1,
∵tan∠ABC=1,即,
∴OC=OB=1,
∴点B的坐标为(3,0),
把B(3,0)代入y=x2+bx+3得32+3b+3=0,
解得:b=-4,
∴抛物线的解析式为y=x2-4x+3;
(2)
解:y=x2-4x+3=(x-2)2-1,
∴顶点D的坐标为(2,-1),对称轴为x=2,
解方程(x-2)2-1=0,得:x1=1,x2=3,
∴点A的坐标为(1,0),
连接BC交对称轴于点E,此时,AE=BE,
∴AE+CE=BE+CE=BC,
∴AE+CE的最小值为BC,
设直线BC的解析式为y=kx+3,
把B(3,0)代入y=kx+3,得:0=3k+3,
解得:k=-1,
∴直线BC的解析式为y=-x+3,
当x=2时,y=1,
∴E点坐标为(2,1),
∵AE=,BE=,AB=3-1=2,
,
∴AE2+BE2=AB2,AE=BE,
∴△AEB为等腰直角三角形,
∴AE与BC的位置关系是:AE⊥BC,
∵CE=,
∴tan∠ACE=,
故答案为:(2,1);AE⊥BC,;
,
(3)
解:设对称轴与x轴交于点F,交AM于点G,
∵∠ACB=∠BAM,
∴tan∠ACB= tan∠BAM,
由(2)得tan∠ACE,
∴tan∠BAM=,
∵AF=OF-OA=1,
∴GF=,
∴G点坐标为(2,),
同理求得直线AG的解析式为y=x-,
解方程x-=x2-4x+3,得x1=1,x2=,
∴M点的横坐标为;
当AM在x轴下方时,
同理求得直线AG1的解析式为y=x+,
解方程x+=x2-4x+3,得x1=1,x2=,
∴M1点的横坐标为;
综上,存在,M点的横坐标为或;
,
(4)
解:∵OA=1,OC=3,
∴tan∠ACO=,
同(3)得H点坐标为(2,),
直线AQ的解析式为y=x-,
解方程x-=x2-4x+3,得x1=1,x2=,
∴Q点的坐标为(,);
当AQ在x轴下方时,
同理求得直线AQ1的解析式为y=x+,
解方程x+=x2-4x+3,得x1=1,x2=,
∴Q1点的坐标为(,);
综上,Q点的坐标为(,)或(,).
,
【点睛】
本题是二次函数综合题,主要考查了待定系数法求函数解析式、解一元二次方程、解直角三角形等,要注意分类求解,避免遗漏.
2、 (1)4
(2),
(3)(2,-3),
【解析】
【分析】
(1)根据碗宽的定义以及等腰直角三角形的性质可以假设B(m,m),代入抛物线的解析式,求出A、B两点坐标即可解决问题.
(2)利用(1)中方法可求碗宽,根据等腰直角三角形可知碗高是碗宽的一半.
(3)①由碗高为3求出a,再求顶点坐标即可;②作QS⊥BP于S,找到PQ和QS的关系后即可解决问题.
(1)
解:根据碗宽的定义以及等腰直角三角形的性质可以假设B(m,m).
把B(m,m)代入y=x2,得,解得,m=2或0(舍去),
∴A(﹣2,2),B(2,2),
∴AB=4,即碗宽为4;
故答案为:4.
(2)
解:类似(1)设B(n,n),代入y=a x2,得,解得,n=或0(舍去),AB=,即碗宽为;
抛物线y=a(x﹣2)2+3是由抛物线y=ax2平移得到的,所以,它们的碗宽一样为,根据等腰直角三角形的性质,可知可知碗高是碗宽的一半,即;
故答案为:,.
(3)
解:①抛物线y=ax2﹣4ax﹣(a>0)对应的碗高为3.由(2)可知,
解得,,抛物线解析式为,化成顶点式为;
则M的坐标为(2,-3);
②如图,作QS⊥BP于S,由旋转可知∠PBO=30°,因为过点P作y轴的平行线交准碗形A'MB'于点Q,
∴PQ⊥OB,
∴∠QPB=60°,∠PQS=30°,
∴PQ=2PS,,
当QS等于碗高时,QS最大,此时PQ长度的最大,
由(2)可知QS最大为3,则,;
PQ长度的最大值为.
【点睛】
本题考查了二次函数的性质和直角三角形的性质,解题关键是准确理解题意,熟练运用二次函数的性质和直角三角形的性质求解.
3、 (1)w=-3x2+360x-9600;
(2)若每日销售利润达到900元,售价为50元;
(3)当销售价为55元时,可以获得最大利润,为1125元.
【解析】
【分析】
(1)利用该电商平均每天的销售利润w(元)=每袋的销售利润×每天的销售量得出即可;
(2)根据(1)的关系式列出一元二次方程即可;
(3)根据题中所给的自变量的取值得到二次的最值问题即可.
(1)
解:w=(x-40)[105-3(x-45)]
=(x-40)(-3x+240)
=-3x2+360x-9600,
答:该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式为w=-3x2+360x-9600;
(2)
解:由题意得,w=-3x2+360x-9600=900,
解得:x1=50,x2=70>55(舍),
答:若每日销售利润达到900元,售价为50元;
(3)
解:w=-3x2+360x-9600=-3(x-60)2+1200,
∵a=-3<0,
∴抛物线开口向下.
又∵对称轴为x=60,
∴当x<60,w随x的增大而增大,
由于50≤x≤55,
∴当x=55时,w的最大值为1125元.
∴当销售价为55元时,可以获得最大利润,为1125元.
【点睛】
本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常用函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-时取得.
4、 (1),,
(2)
【解析】
【分析】
(1)把代入函数解析式,可得,再利用因式分解法解方程可得的坐标,再求解函数的对称轴,可得的坐标;
(2)先证明,利用相似三角形的性质求解,利用三角形的中位线定理再求解.再利用勾股定理求解,如图,当点、、三点共线时,的长最小,此时的周长最小.可得.再利用勾股定理列方程,解方程可得答案.
(1)
令 则,
∴,,
∴对称轴为直线,
∴.
(2)
在中,
,
∴∠ODC=∠CBD,
,
,.
.
∵轴,轴,
∴.
∵,
∴.
∴.
在中,,
∴,即.(负根舍去)
∵点与点关于对称轴对称,
∴.
∴如图,当点、、三点共线时,的长最小,此时的周长最小.
∴的周长的最小值为,
∴的长最小值为,即.
∵,
∴.
∴.
∵,
∴.
【点睛】
本题考查了二次函数与坐标轴的交点问题,二次函数图象的性质,相似三角形的性质与判定,勾股定理,根据对称性求最值,掌握二次函数图象的性质是解题的关键.
5、 (1)
(2)
(3)①;②
【解析】
【分析】
(1)将点代入解析式,待定系数法求二次函数解析式即可;
(2)根据两点求得直线的解析式,进而求得的长,根据的范围分类讨论求得的值,进而得到矩形周长与的二次函数关系式,根据二次函数的性质求得最小值即可;
(3)①根据抛物线解析式求得顶点坐标,进而根据的纵坐标与的纵坐标求得最大与最小值求得其差即可,根据的纵坐标大于3和小于等于3求解即可;②过点作轴交于点,过点作于点,根据①中的范围可得,当时,,进而求得点的坐标,根据计算即可
(1)
解:∵抛物线与轴交于两点(A点在B点的左侧),与y轴交于点C,连接AC,BC,A点的坐标是(,0),
∴令,则,
将点代入得
解得
则抛物线的解析式为
(2)
点P是抛物线上的一个动点,其横坐标为m,且m>0.
点Q是直线AC上的一个动点,且位于x轴的上方,PQ∥y轴
点在点上方,
,,设直线的解析式为
解得
直线的解析式为
设,则
抛物线的解析式为
对称轴为,顶点坐标为,
根据对称性可得
设矩形的周长为,
①当时,,不能构成矩形,
②当时,
则
当时,
③当时,
则
对称轴为
则当时,不存在最小值
综上所述,矩形的周长的最小值为
(3)
①抛物线的解析式为
对称轴为,顶点坐标为,
又
当时,
解得,
当时,
当时,
②当时,
当时,
解得
则
如图,过点作轴交于点,过点作于点,
抛物线的解析式为
令,则
解得
【点睛】
本题考查了二次函数综合问题,待定系数法求二次函数解析式,二次函数与矩形问题,二次函数与三角形面积问题,掌握二次函数的性质与一次函数的性质是解题的关键.
相关试卷
这是一份2021学年第30章 二次函数综合与测试优秀课时训练,共28页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份数学九年级下册第30章 二次函数综合与测试优秀复习练习题,共24页。试卷主要包含了抛物线的顶点坐标为,若点A等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品课时练习,共31页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。