


初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试
展开
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试,共28页。试卷主要包含了若二次函数y=a,抛物线的顶点坐标为等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,1),(4,6),(3,1),则( )A.y≤3 B.y≤6 C.y≥-3 D.y≥62、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )A.① B.② C.③ D.②③3、若二次函数与轴的一个交点为,则代数式的值为( )A. B. C. D.4、如图,抛物线与轴交于点,对称轴为直线,则下列结论中正确的是( )A.B.当时,随的增大而增大C.D.是一元二次方程的一个根5、若二次函数y=a(x+b)2+c(a≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则a,b,c的值可能为( )A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣26、下列函数中,随的增大而减小的函数是( )A. B. C. D.7、抛物线的顶点坐标为( )A.(﹣4,﹣5) B.(﹣4,5) C.(4,﹣5) D.(4,5)8、若点,都在二次函数的图象上,且,则的取值范围是( )A. B. C. D.9、抛物线y=x2+4x+5的顶点坐标是( )A.(2,5) B.(2,1) C.(﹣2,5) D.(﹣2,1)10、2020年2月3日,随着南立交匝道最后一条交通线划线完毕,蒙山大道祊河桥迎来了南北东西方向全线通车,蒙山高架路“踏实落地”,市民从此可一路畅通.蒙山大道祊河桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将抛物线向右平移4个单位,所得到的抛物线的函数解析式是________.2、用“描点法”画二次函数的图象时,列了如下表格:……012…………6.5……当时,二次函数的函数值______3、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.4、已知抛物线与轴相交于,两点.若线段的长不小于2,则代数式的最小值为_______.5、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条拋物线的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值为_________.三、解答题(5小题,每小题10分,共计50分)1、某商店销售甲、乙两种礼品,每件利润分别为20元、10元,每天卖出件数分别为40件、80件.为适应市场需求,该店决定降低甲种礼品的售价,同时提高乙种礼品的售价.售卖时发现,甲种礼品单价每降1元可多卖4件,乙种礼品单价每提高1元就少卖2件.若每天两种礼品共卖出140件,则每天销售的最大利润是多少?(1)分析:设甲种礼品每件降低了x元,填写表格(用含x的式子表示,并化简); 调价后的每件利润调价后的销售量甲种礼品①乙种礼品③②(2)解答: 2、已知二次函数(a、b、c是常数,)中,函数y与自变量x的部分对应值如下表:x…0123…y…00…(1)求该二次函数的表达式;(2)该二次函数图像关于y轴对称的图像所对应的函数表达式是______.3、如图,在平面直角坐标系中,已知点的坐标为,且,抛物线()图象经过,,三点.(1)求抛物线的解析式;(2)是抛物线对称轴上的一点,当的值最小时,求点坐标;(3)若点是直线下方的抛物线上的一个动点,作于点,当的值最大时,求此时点的坐标及的最大值.4、已知抛物线与x轴有交点,求m的取值范围.5、在平面直角坐标系中,抛物线y=x2﹣4mx+m(m≠0)与y交于点P,将抛物线y=x2﹣4mx+m(m≠0)上点P及点P左边的部分图象沿y轴平移,使点P平移后的对应点Q落在(0,﹣m)处,将平移后的图象与原图象剩余部分合称为图象G(1)当m=1时,①求图象G与x轴正半轴的交点坐标;②图象G对应的函数值y随x增大而减小时x的取值范围为 ;(2)当图象G的最低点到x轴的距离为时,求m的值.(3)当过点Q且与y轴垂直的直线与图象G有三个交点时,设另外两个交点为A、B.当Q、A、B三点中,有一点到另外两点的距离之比是1:1时,直接写出线段AB的长度. -参考答案-一、单选题1、C【解析】【分析】根据图像经过三点求出函数表达式,再根据最值的求法求出结果.【详解】解:∵二次函数y=ax2+bx+c经过(﹣1,1),(4,6),(3,1),∴,解得:,∴函数表达式为y=x2-2x-2,开口向上,∴函数的最小值为=,即y≥-3,故选C.【点睛】本题考查了待定系数法求二次函数表达式,二次函数的最值,属于基础题,解题的关键是掌握二次函数最值的求法.2、B【解析】【分析】把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.【详解】解:∵点M(a,b)在抛物线y=x(2-x)上, 当b=-3时,-3=a(2-a),整理得a2-2a-3=0,∵△=4-4×(-3)>0,∴有两个不相等的值,∴点M的个数为2,故①错误;当b=1时,1=a(2-a),整理得a2-2a+1=0,∵△=4-4×1=0,∴a有两个相同的值,∴点M的个数为1,故②正确;当b=3时,3=a(2-a),整理得a2-2a+3=0,∵△=4-4×3<0,∴点M的个数为0,故③错误;故选:B.【点睛】本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.3、D【解析】【分析】把代入即可求出,则,进而可求出代数式的值.【详解】解:二次函数与轴的一个交点为,时,,,,故选:D.【点睛】本题主要考查抛物线与轴的交点,解题的关键是把代入求出的值.4、D【解析】【分析】根据二次函数图象的开口方向向下可得是负数,对称轴位于轴的右侧可得、异号;与轴的交点在正半轴可得是正数,根据二次函数的增减性可得选项错误,根据抛物线的对称轴结合与轴的一个交点的坐标可以求出与轴的另一交点坐标,也就是一元二次方程的根,从而得解.【详解】解:、根据图象,二次函数开口方向向下,则,对称轴位于轴的右侧可得、异号,即,故本选项结论错误;B、当时,随的增大而减小,故本选项结论错误;C、根据图象,抛物线与轴的交点在正半轴,则,故本选项结论错误;D、抛物线与轴的一个交点坐标是,对称轴是直线,设另一交点为,,,另一交点坐标是,是一元二次方程的一个根,故本选项结论正确.故选:D.【点睛】本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.5、A【解析】【分析】根据二次函数的平移性质得出a不发生变化,即可判断a=1.【详解】解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,∴a=1.故选:A.【点睛】此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.6、B【解析】【分析】根据一次函数,反比例函数,二次函数,正比例函数的性质逐项分析即可.【详解】A. ,,随的增大而增大,故A选项不符合题意. B. ,, ,的图像位于第三象限,随的增大而减小,故B选项符合题意;C. ,,对称轴为轴,在对称轴的左边,随的增大而增大,在对称轴的右边,随的增大而减小,故C选项不符合题意;D. ,,随的增大而增大,故D选项不符合题意;故选B.【点睛】本题考查了一次函数,反比例函数,二次函数,正比例函数的性质,掌握以上性质是解题的关键.7、A【解析】【分析】根据抛物线的顶点坐标为 ,即可求解.【详解】解:抛物线的顶点坐标为. 故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握抛物线的顶点坐标为是解题的关键.8、D【解析】【分析】先求出抛物线的对称轴,再根据二次函数的性质,当点和在直线的右侧时;当点和在直线的两侧时,然后分别解两个不等式即可得到的范围.【详解】抛物线的对称轴为直线,∵,,当点和在直线的右侧,则,解得,当点和在直线的两侧,则,解得,综上所述,的范围为.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标满足其解析式是解题的关键.9、D【解析】【分析】利用顶点公式(﹣,),进行解题.【详解】解:∵抛物线y=x2+4x+5∴x=﹣=﹣=﹣2,y==1∴顶点为(﹣2,1)故选:D.【点睛】此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的顶点公式为(﹣,).10、B【解析】【分析】直接利用图象设出抛物线解析式,进而得出答案.【详解】∵拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,∴设抛物线解析式为y=ax2,点B(45,-78),∴-78=452a,解得:a=,∴此抛物线钢拱的函数表达式为,故选:B.【点睛】本题主要考查了二次函数的应用,正确设出抛物线解析式是解题关键.二、填空题1、y=(x-4)2【解析】【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线y=x2的顶点坐标为(0,0),向右平移4个单位后的图象的顶点坐标为(4,0),所以,所得图象的解析式为y=(x-4)2,故答案为:y=(x-4)2.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.2、-4【解析】【分析】由表格得出抛物线的对称轴,根据二次函数的对称性解答可得.【详解】解:由表格可知当x=0和x=2时,y=-2.5,∴抛物线的对称轴为x=1,∴x=3和x=-1时的函数值相等,为-4,故答案为:-4.本题主要考查了二次函数图象上点的坐标特征,根据表格得出抛物线的对称轴是解题的关键.3、##【解析】【分析】分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.【详解】解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,可知:顶点B(9,12),抛物线经过原点,设抛物线的解析式为y=a(x-9)2+12,将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,故抛物线的解析式为:y=-(x−9)²+12,∵PC=12,=1:2,∴点C的坐标为(12,0),AC=6,即可得点A的坐标为(12,6),当x=12时,y=−(12−9)²+12==CE,∵E在A的正上方,∴AE=CE-AC=-6=,故答案为:.【点睛】本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.4、-1【解析】【分析】将抛物线解析式配方,求出顶点坐标为(1,-2)在第四象限,再根据抛物线与x轴有两个交点可得,设为A,B两点的横坐标,然后根据已知,求出的取值范围,再设,配方代入求解即可.【详解】解:== ∴抛物线顶点坐标为(1,-2),在第四象限,又抛物线与轴相交于A,两点.∴抛物线开口向上,即 设为A,B两点的横坐标,∴ ∵线段的长不小于2,∴ ∴ ∴∴∴ 解得, 设当时,有最小值,最小值为:故答案为:-1【点睛】本题主要考查发二次函数的图象与性质,熟记完全平方公式和根与系数的关系是解题的关键.5、2【解析】【分析】首先求出的顶点坐标和与x轴两个交点坐标,然后根据“特征三角形”是等腰直角三角形列方程求解即可.【详解】解:∵∴,代入得:∴抛物线的顶点坐标为∵当时,即,解得:,∴抛物线与x轴两个交点坐标为和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案为:2.【点睛】此题考查了二次函数与x轴的交点问题,等腰直角三角形的性质,解题的关键是求出的顶点坐标和与x轴两个交点坐标.三、解答题1、 (1)①,②,③(2)每天获得的最大利润为元.【解析】【分析】(1)设甲种礼品每件降低了x元,则调价后的销售量为原销量加上增加的销量,可得乙的销量为件,再求解乙调价后的利润即可;(2)设每天的销售利润为元,再利用总利润等于甲礼品的利润加上乙礼品的利润,可得函数关系式,再利用二次函数的性质可得答案.(1)解:设甲种礼品每件降低了x元,则调价后的销售量为:件,乙种礼品调价后的销售量为:件,乙种礼品调价后的利润为:元,填表如下: 调价后的每件利润调价后的销售量甲种礼品 乙种礼品 (2)解:设每天的销售利润为元,则 当时,(元)所以每天获得的最大利润为元.【点睛】本题考查的是列代数式,二次函数的实际应用,理解题意,列出二次函数的关系式是解本题的关键.2、 (1)二次函数的表达式为: ;(2).【解析】【分析】(1)观察表格数据,由、可知,二次函数图象的顶点坐标为,设二次函数的表达式为,再选一组值代入即可求出a值,解析式即可确定;(2)先根据顶点坐标求出关于y轴对称的顶点坐标,然后设抛物线解析式为,结合表中数据可得函数图象经过,代入求解即可确定抛物线解析式.(1)解:观察表格数据,由、可知,二次函数图象的顶点坐标为,设二次函数的表达式为,把代入得,,∴,∴,即 ;(2)解:抛物线的顶点是,关于y轴的对称点,开口方向与原抛物线相同, 设二次函数的表达式为,在y轴上且在函数图象上,将其代入函数表达式为:,解得:,∴关于y轴对称的图象所对应的函数表达式为,故答案为:.【点睛】本题考查了用待定系数法求二次函数的解析式及抛物线的轴对称变换问题,求出关键点的对称点坐标是解题关键.3、 (1);(2)();(3)点P(2,-6),PD最大值为【解析】【分析】(1)根据点B的坐标,得出OB的长,进而根据即可得到OA、OC的长,利用待定系数法求出函数解析式;(2)利用配方法求出抛物线的对称轴,连接AC,交对称轴于一点即为点M,此时的值最小,求出直线AC的解析式,当时求出y的值即可得到点M的坐标;(3)过点P作PH平行于y轴,交AC于点H,根据等腰直角三角形的性质求出∠OAC=∠OCA=45°,根据平行线的性质求出∠PHD=∠OCA=45°,设点P(x,),则点H(x,x-4),根据正弦函数定义得到,根据函数的性质得解问题.(1)解:∵点的坐标为,∴OB=1,∵,∴OA=OC=4,∴点A的坐标为(4,0),点C的坐标为(0,-4),将点A、B、C的坐标代入中,得,解得,∴抛物线的解析式为;(2)解:∵,∴抛物线的对称轴为直线,连接AC,交对称轴于一点即为点M,此时的值最小,设直线AC的解析式为,∴,解得,∴直线AC的解析式为y=x-4,当时,,∴点M的坐标为();(3)解:过点P作PH平行于y轴,交AC于点H,∵OA=OC,∴∠OAC=∠OCA=45°,∴∠PHD=∠OCA=45°,设点P(x,),则点H(x,x-4),∴,∵,∴PD有最大值,当x=2时,PD最大值为,此时点P(2,-6). .【点睛】此题考查了待定系数法求抛物线解析式,抛物线的对称轴,化一般式为顶点式,最短路径问题,二次函数的性质,锐角三角函数,正确掌握抛物线的各知识点是解题的关键,这是一道二次函数与一次函数的综合题.4、【解析】【分析】根据抛物线与轴有交点转化为当时,方程有两个实数根,根据一元二次方程根的判别式大于或等于0,解不等式求解即可.【详解】∵抛物线与x轴有交点,∴方程有两个实数根.解得.【点睛】本题考查了抛物线与轴交点问题,转化为一元二次方程根的判别式是解题的关键.一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.5、 (1)①(,0),(,0);②或(2)或(3)或【解析】【分析】(1)①令y=0,得一元二次方程,求出方程的解即可解决问题;②将抛物线解析式配方找出对称轴,结合函数图象解答问题即可;(2)分两种情况结合图象G的最低点到x轴的距离为列出方程求解即可;(3)分两种情况求出点A,B的坐标,根据Q、A、B三点中,有一点到另外两点的距离之比是1:1列方程求出mr wfhg,gmf fiy AB的长即可(1)①当m=1时,y=x2﹣4mx+m=x2﹣4x+1令y=0,则x2﹣4x+1=0解得,,∴图象G与x轴正半轴的交点坐标(,0),(,0)②y=x2﹣4x+1= ∴函数y=x2﹣4x+1对称轴为直线x=2,顶点坐标为(2,-3),且开口向上如图,∴图象G对应的函数值y随x增大而减小时x的取值范围为或 故答案为:或(2)当时,∵y=x2﹣4mx+m又∵ ∴①当0<m<时,>0,即点Q是图象G的最低点,∴,不符合题意舍去,②当m≥时,≤0,即抛物线的顶点是图象G的最低点,∴ 解得,,(舍去)当时,同理可得,综上,m的值为或(3)当时,如图所示,当时,则有 配方得, 解得, ∴ ∴ ∵ ∴ ∴整理得, 解得,经检验,是原方程的根,但m≠0∴∴;当时,如图,当时,则有 配方得, 解得, ∴ 平移后的图象解析式为 当时,则有解得, ∴ ∴ ∵,即 ∴解得, 经检验是原方程的根,但m≠0∴∴综上所述,AB的长为:或【点睛】本题主要考查了二次函数的图象与性质,解题的关键是理解题意,学会用转化的思想思考问题,学会利用参数构建方程确定交点坐标.
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品随堂练习题,共33页。
这是一份冀教版九年级下册第30章 二次函数综合与测试优秀练习题,共25页。试卷主要包含了若二次函数y=ax2+bx+c,一次函数与二次函数的图象交点等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀巩固练习,共28页。试卷主要包含了已知点,,都在函数的图象上,则等内容,欢迎下载使用。
