![2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题测评试题第1页](http://img-preview.51jiaoxi.com/2/3/12734585/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题测评试题第2页](http://img-preview.51jiaoxi.com/2/3/12734585/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题测评试题第3页](http://img-preview.51jiaoxi.com/2/3/12734585/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试优秀练习题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试优秀练习题,共25页。试卷主要包含了若二次函数y=ax2+bx+c,一次函数与二次函数的图象交点等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列函数中,随的增大而减小的函数是( )A. B. C. D.2、若函数,则当函数y=15时,自变量的值是( )A. B.5 C.或5 D.5或3、若二次函数y=a(x+b)2+c(a≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则a,b,c的值可能为( )A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣24、若二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,1),(4,6),(3,1),则( )A.y≤3 B.y≤6 C.y≥-3 D.y≥65、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图( )A. B.C. D.6、一次函数与二次函数的图象交点( )A.只有一个 B.恰好有两个C.可以有一个,也可以有两个 D.无交点7、二次函数y=ax2+bx+c的图像全部在x轴的上方,下列判断中正确的是( )A.a<0,c<0 B.a<0,c>0 C.a>0,c<0 D.a>0,c>08、二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是( )A. B.y≤2 C.y<2 D.y≤39、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个10、二次函数的图像如图所示,那么点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知二次函数,当y随x的增大而增大时,自变量x的取值范围是______.2、如图,在矩形中,,点E是的中点,连接,以点为原点,建立平面直角坐标系,点M是上一动点,取的中点为N,连接,则的最小值是________.(提示:两点间距离公式 )3、已知抛物线,将此二次函数解析式用配方法化成的形式得__________,此抛物线经过两点A(-2,y1)和,则与的大小关系是_____________.4、把二次函数的图象关于轴对称后得到的图象的函数关系式为_________.5、已知二次函数y1=x2-2x+b的图象过点(-2,5),另有直线y2=5,则符合条件y1>y2的x的范围是________.三、解答题(5小题,每小题10分,共计50分)1、超市销售某种儿童玩具,如果每件利润为40元(市场管理部分规定,该种玩具每件利润不能超过60元),每天可售出50件,根据市场调查发现,销售单价每增加2元,每天销售量会减少1件,设销售单价增加元,每天售出件(1)请写出与之间的函数表达式(2)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?2、二次函数(、、是常数,)的自变量和函数值部分对应值如下表:…-3-2-101……8545…根据以上列表,回答下列问题:(1)直接写出、的值;(2)求此二次函数的解析式.3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,求此二次函数表达式.4、如图,已知抛物线与轴交于、两点,与轴交于点.(1)求抛物线的解析式;(2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交于点,过点作,垂足为.求线段的最大值;(3)已知为抛物线对称轴上一动点,若是直角三角形,求出点的坐标.5、已知抛物线经过点,与y轴交于点C,连接.(1)求抛物线的解析式;(2)在直线上方抛物线上取一点P,过点P作轴交边于点Q,求的最大值;(3)在直线上方抛物线上取一点D,连接.交于点F,当时,求点D的坐标. -参考答案-一、单选题1、B【解析】【分析】根据一次函数,反比例函数,二次函数,正比例函数的性质逐项分析即可.【详解】A. ,,随的增大而增大,故A选项不符合题意. B. ,, ,的图像位于第三象限,随的增大而减小,故B选项符合题意;C. ,,对称轴为轴,在对称轴的左边,随的增大而增大,在对称轴的右边,随的增大而减小,故C选项不符合题意;D. ,,随的增大而增大,故D选项不符合题意;故选B.【点睛】本题考查了一次函数,反比例函数,二次函数,正比例函数的性质,掌握以上性质是解题的关键.2、D【解析】【分析】根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.【详解】解:当x<3时,令2x2-3=15,解得x=-3;当x≥3时,令3x=15,解得x=5;由上可得,x的值是-3或5,故选:D.【点睛】本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.3、A【解析】【分析】根据二次函数的平移性质得出a不发生变化,即可判断a=1.【详解】解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,∴a=1.故选:A.【点睛】此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.4、C【解析】【分析】根据图像经过三点求出函数表达式,再根据最值的求法求出结果.【详解】解:∵二次函数y=ax2+bx+c经过(﹣1,1),(4,6),(3,1),∴,解得:,∴函数表达式为y=x2-2x-2,开口向上,∴函数的最小值为=,即y≥-3,故选C.【点睛】本题考查了待定系数法求二次函数表达式,二次函数的最值,属于基础题,解题的关键是掌握二次函数最值的求法.5、B【解析】【分析】分别利用函数解析式分析图象得出答案.【详解】解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;B、两函数图象符合题意;C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.故选:B.【点睛】此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.6、B【解析】【分析】联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.【详解】解:联立一次函数和二次函数的解析式可得:整理得:有两个不相等的实数根与的图象交点有两个故选:B.【点睛】本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解.7、D【解析】【分析】由抛物线全部在轴的上方,即可得出抛物线与轴无交点且,进而即可得出、,此题得解.【详解】解:二次函数的图象全部在轴的上方,,,,,.,.故选:D.【点睛】本题考查了二次函数的性质,解题的关键是牢记二次函数的性质.8、A【解析】【分析】根据待定系数求解析式,进而求得顶点坐标,即的最大值,进而即可求得答案【详解】解:∵二次函数y=ax2+bx+c图象的对称轴为,与轴的交点为,与轴的一个交点为,∴另一交点为设抛物线解析式为,将点代入得解得抛物线解析式为则顶点坐标为当x>0时,函数值y的取值范围是故选A【点睛】本题考查了待定系数法求抛物线解析式,化为顶点式是解题的关键.9、B【解析】【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【详解】解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b<0,与y轴交点在负半轴,因此c<0,所有abc>0,因此②正确的;由关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,就是当y=m时,对应抛物线上有两个不同的点,即(x1,m),(x2,m),由图象可知此时m>-2因此④正确的,综上所述,正确的有2个,故选:B.【点睛】考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.10、C【解析】【分析】根据对称轴的位置、开口方向、与y轴的交点的位置即可判断出a、b、c的符号,进而求出的符号.【详解】由函数图像可得:∵抛物线开口向上,∴a>0,又∵对称轴在y轴右侧,∴,∴b<0,又∵图象与y轴交于负半轴,∴c<0,∴∴在第三象限故选:C【点睛】考查二次函数y=ax2+bx+c系数符号的确定.根据对称轴的位置、开口方向、与y轴的交点的位置判断出a、b、c的符号是解题的关键.二、填空题1、【解析】【分析】函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大,进而可得自变量x的取值范围.【详解】解:由知函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大∴自变量x的取值范围是故答案为:.【点睛】本题考查了二次函数的图象与性质.解题的关键在于熟练把握二次函数的图象与性质.2、【解析】【分析】分别求出点A,C,E的坐标,求出直线BE的解析式,设点的坐标为,由中点坐标公式得,由两点之间的距离公式得:,进一步可得出AN的最小值.【详解】解:在矩形中,,点是的中点,,∴,设直线BE的解析式为y=kx,把E(3,3)代入y=kx,得,k=1直线的函数解析式为,设点的坐标为,点是上一动点,,点是的中点,,由两点之间的距离公式得:,由二次函数的性质得:在内,随的增大而增大,则当时,取得最小值,最小值为36,因此,的最小值为,故答案为:.【点睛】本题这一切考查了坐标与图形以及二次函数的性质等知识,熟练掌握二次函数的性质是解答本题的关键.3、 【解析】【分析】(1)利用配方法将二次函数的一般式转化为顶点式;(2)将与分别代入二次函数解析式中,计算出与的值,并比较大小.【详解】(1)解:,故答案为:. (2)当 时,当时,∴ 与的大小关系是,故答案为:.【点睛】本题考查用配方法将二次函数的一般式转化为顶点式,以及二次函数的增减性,熟练掌握配方法是解决本题的关键.4、【解析】【分析】函数的图象关于y轴对称后的顶点坐标为(-1,0),然后根据顶点式写出解析式.【详解】解:的顶点坐标是(1,2),由于(1,2)关于y轴的对称点为(-1,2),所以得到的图象的函数解析式是;故答案为.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5、x<−2或x>4## x>4或x<-2【解析】【分析】先根据抛物线经过点(-2,5),求出函数解析式,再求出抛物线的对称轴,根据函数的对称性,找到抛物线经过另一点(4,5),从而得出结论.【详解】解:∵二次函数y1=x2-2x+b的图象过点(-2,5),∴5=(-2)2-2×(-2)+b,解得:b=-3,∴二次函数解析式y1=x2-2x-3,∴抛物线开口向上,对称轴为x=-=1,∴抛物线过点(4,5),∴符合条件y1>y2的x的范围是x<-2或x>4.故答案为:x<-2或x>4.【点睛】本题考查了二次函数与不等式(组),关键是对二次函数的图象与性质的掌握和应用.三、解答题1、 (1)(2)当x为20时w最大,最大值是2400元【解析】【分析】(1)根据“每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件”列函数关系式即可;(2)根据题意得到w=,根据二次函数的性质得到当x<30时,w随x的增大而增大,于是得到结论.(1)解:根据题意得,;(2)根据题意得,w==,∵a=<0,∴当x<30时,w随x的增大而增大,∵40+x≤60,x≤20,∴当x=20时,w最大=2400,答:当x为20时w最大,最大值是2400元.【点睛】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键.2、 (1)c=5,m=8(2)y=x²+2x+5【解析】【分析】(1)根据抛物线的对称性及表格中函数值x相等可求出对称轴进而求出m的值;根据自变量x=0可求出抛物线与y轴的交点,即可求得c的值;(2)根据对称轴为x=-1,得到抛物线顶点为(-1,4),设顶点式为y=a(x+1)2+4,代入其中一个点求出a的值即可求出二次函数解析式.(1)解:根据图表可知:二次函数的图象过点(0,5),(-2,5),∴二次函数的对称轴为:直线,∵直线x=-3到对称轴x=-1的距离为2,直线x=1到对称轴x=-1的距离也为3,∴(-3,8)的对称点为(1,8),∴m=8,当x=0时,由表格中数据可知:c=5.(2)解:∵对称轴是直线x=-1,∴由表格中数据可知:顶点为(-1,4),设y=a(x+1)2+4,将(0,5)代入y=a(x+1)2+4得,a+4=5,解得a=1,∴这个二次函数的解析式为y=(x+1)2+4=x²+2x+5.【点睛】本题考查的是二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数的解析式,能熟练求出函数对称轴是解本题的关键.3、y=﹣x2﹣2x+3【解析】【分析】根据图象确定经过抛物线的三个点,设二次函数解析式为y=a(x+3)(x﹣1),再代入(0,3)利用待定系数法计算即可.【详解】解:由图象可知,抛物线经过(﹣3,0)、(1,0)、(0,3),设抛物线的解析式为:y=a(x+3)(x﹣1),代入点(0,3),则3=a(0+3)(0﹣1),解得:a=﹣1,则抛物线的解析式为:y=﹣(x+3)(x﹣1),整理得到:y=﹣x2﹣2x+3.【点睛】本题考查了二次函数解析式的求法,属于基础题,计算过程中细心即可.4、 (1)(2)当时,有最大值,最大值是(3)点的坐标为,,,【解析】【分析】(1)由抛物线与x轴交于A(﹣1,0)、B(3,0)两点,设抛物线为y=a(x+1)(x﹣3),将C(0,3)代入即可得y=﹣x2+2x+3;(2)由B(3,0),C(0,3),可推得△DEM是等腰直角三角形,DM=DE,设直线BC为y=kx+b,用待定系数法可得直线BC为y=﹣x+3,设D(m,﹣m2+2m+3),则E(m,﹣m+3),即得DE=﹣m2+3m,由二次函数性质可得线段DM的最大值;(3)设P(1,t),可得PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,分三种情况:①PC为斜边时,②PB为斜边时,③BC为斜边时,列出方程求解即可.(1)解:∵抛物线与轴交于、两点,∴设抛物线解析式为,将点坐标代入,得:,解得:,抛物线解析式为;(2)解:设直线的函数解析式为,∵直线过点,,∴,解得,∴,设,, ∴,∵,,∴,∴,∵轴,∴,∴,又∵,在中,∴,∵,∴当时,有最大值,最大值是;(3)解:抛物线的对称轴为直线, 设P(1,t),而B(3,0),C(0,3),∴PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,①当是斜边时,,解得:;②当是斜边时,,解得:;③当是斜边时,, 整理,得:,解得:,故点的坐标为:,,,【点睛】本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、直角三角形的判定等知识,解题的关键是用含字母的代数式表示相关点的坐标及相关线段的长度.5、 (1)(2)(3)(1,4)或(2,3)【解析】【分析】(1)根据题意待定系数法求二次函数解析式即可;(2)根据二次函数解析式求得点得到坐标,进而求得直线的解析式,设P点坐标为,则Q点坐标为,进而表示出的长,根据二次函数的性质求得最大值即可;(3)过点D作BC的平行线交x轴于G,交y轴于E,根据∆COF与∆CDF共高,面积比转化为底边比,求得,根据平行线分线段成比例求得,进而求得的长,即可求得的坐标,根据一次函数的平移可得直线EG解析式为:y= -x+5,联立直线与抛物线解析式,即可求得点的坐标(1)抛物线经过点,解得抛物线的解析式为:(2)抛物线的解析式为:令,则设直线的解析式为则解得直线BC的解析式为:过点P作PQ⊥x轴交BC于点Q,设P点坐标为,则Q点坐标为,则∴PQ的最大值是.(3)∵∆COF与∆CDF共高,面积比转化为底边比,OF:DF=S△COF:S△CDF=3:2过点D作BC的平行线交x轴于G,交y轴于E,根据平行线分线段成比例,OF:FD=OC:CE=3:2∵OC=3,∴OE=5,∴E(0,5)∴直线EG解析式为:y= -x+5联立方程,得:解得:,则点D的坐标为(1,4)或(2,3);【点睛】本题考查了二次函数综合,待定系数法求二次函数解析式,根据二次函数的性质求最值,平行线分线段成比例,掌握以上知识是解题的关键.
相关试卷
这是一份数学九年级下册第30章 二次函数综合与测试优秀复习练习题,共24页。试卷主要包含了抛物线的顶点坐标为,若点A等内容,欢迎下载使用。
这是一份初中数学第30章 二次函数综合与测试优秀同步测试题,共32页。试卷主要包含了同一直角坐标系中,函数和等内容,欢迎下载使用。
这是一份2020-2021学年第30章 二次函数综合与测试精品课时训练,共26页。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)