


初中数学冀教版七年级下册第十一章 因式分解综合与测试同步练习题
展开这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试同步练习题,共15页。试卷主要包含了若a2=b+2,b2=a+2,,下列分解因式正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、把多项式a2﹣9a分解因式,结果正确的是( )
A.a(a+3)(a﹣3) B.a(a﹣9)
C.(a﹣3)2 D.(a+3)(a﹣3)
2、下列各式因式分解正确的是( )
A. B.
C. D.
3、下列由左到右的变形,属于因式分解的是( )
A. B.
C. D.
4、下列等式从左到右的变形,属于因式分解的是( )
A.(x+1)(x﹣1)=x2﹣1 B.x2﹣8x+16=(x﹣4)2
C.x2﹣2x+1=x(x﹣1)+1 D.x2﹣4y2=(x+4y)(x﹣4y)
5、下列多项式不能用公式法因式分解的是( )
A.a2+4a+4 B.a2﹣a+1 C.﹣a2﹣9 D.a2﹣1
6、若a2=b+2,b2=a+2,(a≠b)则a2﹣b2﹣2b+2的值为( )
A.﹣1 B.0 C.1 D.3
7、已知关于x的二次三项式分解因式的结果是,则代数式的值为( )
A.-3 B.-1 C.- D.
8、下列各等式中,从左到右的变形是正确的因式分解的是( )
A.2x•(x﹣y)=2x2﹣2xy B.(x+y)2﹣x2=y(2x+y)
C.3mx2﹣2nx+x=x(3mx﹣2n) D.x2+3x﹣2=x(x+3)﹣2
9、下列分解因式正确的是( )
A. B.
C. D.
10、下列各式从左到右的变形属于因式分解的是( )
A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x•3y
C.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:________.
2、已知x2+mx+16能用完全平方公式因式分解,则m的值为 ___.
3、若,则_________.
4、分解因式:________.
5、分解因式:_________.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:
(1)
(2)
2、分解因式:
(1)﹣9x3y+6x2y2﹣xy3
(2)(x2+4)2﹣16x2
3、已知,.
求:(1)的值;
(2)的值.
4、分解因式:
5、已知,求的值.
-参考答案-
一、单选题
1、B
【解析】
【分析】
用提公因式法,提取公因式即可求解.
【详解】
解:a2﹣9a=a(a﹣9).
故选:B.
【点睛】
本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.
2、B
【解析】
【分析】
根据因式分解的定义(把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解)及完全平方公式依次进行判断即可得.
【详解】
解:A、不能进行因式分解,错误;
B、选项正确,是因式分解;
C、选项是整式的乘法,不是因式分解,不符合题意;
D、,选项因式分解错误;
故选:B.
【点睛】
题目主要考查因式分解的定义及方法,深刻理解因式分解的定义是解题关键.
3、A
【解析】
【分析】
直接利用因式分解的定义分别分析得出答案.
【详解】
解:、,是因式分解,符合题意.
、,是整式的乘法运算,故此选项错误,不符合题意;
、,不符合因式分解的定义,故此选项错误,不符合题意;
、,不符合因式分解的定义,故此选项错误,不符合题意;
故选:A.
【点睛】
本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式.
4、B
【解析】
【分析】
根据因式分解的定义“把一个多项式化成几个整式的积的形式叫做因式分解”进行解答即可得.
【详解】
解:A、,不是因式分解,选项说法错误,不符合题意;
B、,是因式分解,选项说法正确,符合题意;
C、,不是因式分解,选项说法错误,不符合题意;
D、左、右不相等,选项说法错误,不符合题意;
故选B.
【点睛】
本题考查了因式分解,解题的关键是熟记因式分解的定义.
5、C
【解析】
【分析】
直接利用完全平方公式以及平方差公式分别分解因式,进而得出答案.
【详解】
解:A中,故此选项不合题意;
B中,故此选项不合题意;
C中无法分解因式,故此选项符合题意;
D中,故此选项不合题意;
故选:C.
【点睛】
本题考查了利用乘法公式进行因式分解.解题的关键在于对完全平方公式和平方差公式的灵活运用.
6、D
【解析】
【分析】
由a2=b+2,b2=a+2,且a≠b,可得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2,再代入计算即可求解.
【详解】
解:∵a2=b+2,b2=a+2,且a≠b,
∴a2−b2=b−a,
即(a+b)(a-b)=b-a,
∴a+b=−1,
∴a2-b2-2b+2
=(a+b)(a-b)−2b+2
=b−a-2b+2
=-(a+b)+2
=1+2
=3.
故选:D.
【点睛】
本题考查了代数式求值,解题的关键是求得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2是解题的关键.
7、C
【解析】
【分析】
根据因式分解与整式乘法的关系,可求得a与b的值,从而可求得结果的值.
【详解】
则,
∴
故选:C
【点睛】
本题考查了因式分解与整式乘法的关系,负整数指数幂的意义,掌握因式分解与整式乘法的关系是本题的关键.
8、B
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.
【详解】
解:A、是整式的乘法,不是因式分解,故此选项不符合题意;
B、(x+y)2﹣x2=2xy+y2=y(2x+y),把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;
C、3mx2﹣2nx+x=x(3mx﹣2n+1),故此选项不符合题意;
D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.
故选:B.
【点睛】
本题考查了因式分解的定义.严格按照因式分解的定义去验证每个选项是正确解答本题的关键.
9、C
【解析】
【分析】
根据因式分解的方法逐个判断即可.
【详解】
解:A. ,原选项错误,不符合题意;
B. ,原选项错误,不符合题意;
C. ,正确,符合题意;
D. ,原选项错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.
10、D
【解析】
【分析】
根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.
【详解】
解:A、是整式的乘法,故此选项不符合题意;
B、不属于因式分解,故此选项不符合题意;
C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;
D、把一个多项式转化成几个整式积的形式,故此选项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.
二、填空题
1、
【解析】
【分析】
先提取公因式-a,再用完全平方公式分解因式得出答案.
【详解】
解:,
故答案为:
【点睛】
本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.
2、
【解析】
【分析】
利用完全平方公式的结构特征判断,确定出m的值即可得到答案.
【详解】
解:∵要使得能用完全平方公式分解因式,
∴应满足,
∵,
∴,
故答案为:.
【点睛】
此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键.
3、2022
【解析】
【分析】
根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.
【详解】
∵
∴
∴
故填“2022”.
【点睛】
本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.
4、
【解析】
【分析】
直接根据提公因式法因式分解即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了提公因式法因式分解,准确找到公因式是解本题的关键.
5、##(a+1)( a-5)
【解析】
【分析】
根据十字相乘法进行因式分解即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了因式分解,熟练掌握十字相乘法是解本题的关键.
三、解答题
1、 (1)
(2)
【解析】
【分析】
(1)先提取公因式,再利用平方差公式因式分解;
(2)先利用平方差公式因式分解,再提取公因式因式分解.
(1)
解:;
(2)
解:.
【点睛】
本题考查了因式分解,解题的关键是掌握提取公因式及平方差公式.
2、 (1)
(2)
【解析】
【分析】
(1)先提出公因式,再利用完全平方公式因式分解,即可求解;
(2)先用平方差公式因式分解,再利用完全平方公式因式分解,即可求解.
(1)
解: ;
(2)
解:
.
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并灵活选用合适的方法进行解答是解题的关键.
3、(1)48;(2)52
【解析】
【分析】
(1)原式提取公因式,将已知等式代入计算即可求出值;
(2)原式利用完全平方公式变形后,将各自的值代入计算即可求出值.
【详解】
解:(1)∵,.
∴;
(2)∵,.
∴.
【点睛】
此题考查了因式分解,完全平方公式变形,代数式求值,熟练掌握因式分解方法,完全平方公式是解本题的关键.
4、(a-3)2(a+3)2
【解析】
【分析】
直接利用完全平方公式以及平方差公式分解因式得出答案.
【详解】
解:a4-18a2+81
=(a2-9)2
=(a-3)2(a+3)2.
【点睛】
此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.
5、10
【解析】
【分析】
把a3b+ab3分解为ab[(a+b)2-2ab],然后把a+b=-3,ab=2代入计算即可得出答案.
【详解】
解:∵a+b=-3,ab=2,
∴a3b+ab3
=ab(a2+b2)
=ab[(a+b)2-2ab]
=2×[(-3)2-2×2]
=2×(9-4)
=10.
【点睛】
本题考查了分解因式的应用,会把a3b+ab3分解为ab[(a+b)2-2ab]是解决问题的关键.
相关试卷
这是一份初中数学第十一章 因式分解综合与测试同步训练题,共19页。试卷主要包含了已知实数x,y满足,下列多项式中有因式x﹣1的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试综合训练题,共16页。试卷主要包含了下列因式分解正确的是.,如图,长与宽分别为a,已知,,那么的值为等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试一课一练,共17页。试卷主要包含了下列因式分解正确的是,已知实数x,y满足,已知x2+x﹣6=等内容,欢迎下载使用。