初中数学冀教版七年级下册第十一章 因式分解综合与测试课后练习题
展开这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课后练习题,共16页。试卷主要包含了对于有理数a,b,c,有,因式分解,分解因式2a2等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知a2(b+c)=b2(a+c)=2021,且a、b、c互不相等,则c2(a+b)﹣2020=( )
A.0 B.1 C.2020 D.2021
2、下列各式能用完全平方公式进行分解因式的是( )
A.x2+1 B.x2+2x﹣1 C.x2+3x+9 D.
3、下列从左到右的变形,是因式分解的是( )
A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)
C.x2+1=x(x+) D.a2b+ab2=ab(a+b)
4、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).A.勤学 B.爱科学 C.我爱理科 D.我爱科学
5、对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2ab+b2=(a+b)2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是( )
A.a(m+n)+b(m+n)=(a+b)(m+n)
B.m(a+b)+n(a+b)=(a+b)(m+n)
C.am+bm+an+bn=(a+b)(m+n)
D.ab+mn+am+bn=(a+b)(m+n)
6、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )
A.非负数 B.正数 C.负数 D.非正数
7、对于有理数a,b,c,有(a+100)b=(a+100)c,下列说法正确的是( )
A.若a≠﹣100,则b﹣c=0 B.若a≠﹣100,则bc=1
C.若b≠c,则a+b≠c D.若a=﹣100,则ab=c
8、因式分解:x3﹣4x2+4x=( )
A. B. C. D.
9、分解因式2a2(x-y)+2b2(y-x)的结果是( )
A.(2a2+2b2) (x-y) B.(2a2-2b2) (x-y)
C.2(a2-b2) (x-y) D.2(a-b)(a+b)(x-y)
10、下列各等式中,从左到右的变形是正确的因式分解的是( )
A.2x•(x﹣y)=2x2﹣2xy B.(x+y)2﹣x2=y(2x+y)
C.3mx2﹣2nx+x=x(3mx﹣2n) D.x2+3x﹣2=x(x+3)﹣2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式分解:4x2y2﹣2x3y=______.
2、分解因式:___.
3、把多项式分解因式结果是______.
4、分解因式:3y2﹣12=______________.
5、分解因式:__________.
三、解答题(5小题,每小题10分,共计50分)
1、已知,.
求:(1)的值;
(2)的值.
2、分解因式:.
3、仔细阅读下面例题,解答问题:
例题:已知:二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.
解:设另一个因式为(x+n),得
x2﹣4x+m=(x+3)(x+n),
则x2﹣4x+m=x2+(n+3)x+3n
∴
解得:n=﹣7,m=﹣21
∴另一个因式为(x﹣7),m的值为﹣21.
问题:仿照以上方法解答下面问题:
已知二次三项式2x2+3x﹣k有一个因式是(x﹣5),求另一个因式以及k的值.
4、分解因式:.
5、因式分解:
(1)2x(x-3)-8;
(2)a2-b2-6a+9.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据题意先通过已知等式,找到a,b,c的关系再求值即可得出答案.
【详解】
解:∵a2(b+c)=b2(a+c).
∴a2b+a2c﹣ab2﹣b2c=0.
∴ab(a﹣b)+c(a+b)(a﹣b)=0.
∴(a﹣b)(ab+ac+bc)=0.
∵a≠b.
∵a2(b+c)=2021.
∴a(ab+ac)=2021.
∴a(﹣bc)=2021.
∴﹣abc=2021.
∴abc=﹣2021.
∴原式=c(ac+bc)﹣2020=c(﹣ab)﹣2020
=﹣abc﹣2020
=2021﹣2020
=1.
故选:B.
【点睛】
本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0是解答本题的关键.
2、D
【解析】
【分析】
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.
【详解】
解:A、x2+1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;
B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;
C、x2+3x+9不符合完全平方公式法分解因式的式子特点,故本选项不符合题意;
D、,故选项正确;
故选:D
【点睛】
本题考查了完全平方式的运用分解因式,关键是熟练掌握完全平方式的特点.
3、D
【解析】
【分析】
分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.
【详解】
A、结果不是积的形式,因而不是因式分解;
B、,因式分解错误,故错误;
C、 不是整式,因而不是因式分解;
D、满足因式分解的定义且因式分解正确;
故选:D.
【点睛】
题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.
4、C
【解析】
【分析】
利用平方差公式,将多项式进行因式分解,即可求解.
【详解】
解:
∵、、、依次对应的字为:科、爱、我、理,
∴其结果呈现的密码信息可能是我爱理科.
故选:C
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.
5、D
【解析】
【分析】
由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可
【详解】
解:如图②,S长方形ABCD=(a+b)(m+n),
A.S长方形ABCD=S长方形ABFH+S长方形HFCD=a(m+n)+b(m+n)=(a+b)(m+n),不符合题意;
B.S长方形ABCD=S长方形AEGD+S长方形BCGE=m(a+b)+n(a+b)=(a+b)(m+n),不符合题意;
C.S长方形ABCD=S长方形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCG=am+bm+an+bn=(a+b)(m+n),不符合题意;
D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;
故选:D.
【点睛】
本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.
6、A
【解析】
【分析】
先把原式化为,结合完全平方公式可得原式可化为从而可得答案.
【详解】
解:x2-4x+y2-6y+13
故选A
【点睛】
本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.
7、A
【解析】
【分析】
将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.
【详解】
解:,
,
,
∴或,
即:或,
A选项中,若,则正确;
其他三个选项均不能得出,
故选:A.
【点睛】
题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.
8、A
【解析】
【分析】
根据因式分解的解题步骤,“一提、二套、三查”,进行分析,首先将整式进行提公因式,变为:,之后套公式变为:,即可得出对应答案.
【详解】
解:原式==
故选:A.
【点睛】
本题考查的是因式分解的基础应用,熟练掌握因式分解的一般解题步骤,以及各种因式分解的方法是解题的关键.
9、D
【解析】
【分析】
根据提公因式法和平方差公式分解因式.
【详解】
解:2a2(x-y)+2b2(y-x)
=2a2(x-y)-2b2(x-y)
=(2a2-2b2)(x-y)
=2(a2-b2)(x-y)
=2(a-b)(a+b)(x-y).
故选:D.
【点睛】
此题考查了分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式及十字相乘法)是解题的关键.
10、B
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.
【详解】
解:A、是整式的乘法,不是因式分解,故此选项不符合题意;
B、(x+y)2﹣x2=2xy+y2=y(2x+y),把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;
C、3mx2﹣2nx+x=x(3mx﹣2n+1),故此选项不符合题意;
D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.
故选:B.
【点睛】
本题考查了因式分解的定义.严格按照因式分解的定义去验证每个选项是正确解答本题的关键.
二、填空题
1、2x2y(2y-x)
【解析】
【分析】
直接提取公因式2x2y,进而分解因式即可.
【详解】
解:4x2y2-2x3y=2x2y(2y-x).
故答案为:2x2y(2y-x).
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
2、##
【解析】
【分析】
先提取公因式5,后用和的完全平方公式即可.
【详解】
∵,
故答案为.
【点睛】
本题考查了因式分解,熟练掌握先提取公因式,后用公式的解题策略是解题的关键.
3、
【解析】
【分析】
利用平方差公式分解得到结果,即可做出判断.
【详解】
解:
=
=
故答案为:
【点睛】
此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.
4、
【解析】
【分析】
先提取公因式3,然后再根据平方差公式进行因式分解即可.
【详解】
解:;
故答案为.
【点睛】
本题主要考查因式分解,熟练掌握因式分解是解题的关键.
5、
【解析】
【分析】
直接提取公因式3y分解因式即可.
【详解】
解:
=
故答案为:.
【点睛】
此题主要考查了提取公因式法分解因式,正确找到公因式是解题关键.
三、解答题
1、(1)48;(2)52
【解析】
【分析】
(1)原式提取公因式,将已知等式代入计算即可求出值;
(2)原式利用完全平方公式变形后,将各自的值代入计算即可求出值.
【详解】
解:(1)∵,.
∴;
(2)∵,.
∴.
【点睛】
此题考查了因式分解,完全平方公式变形,代数式求值,熟练掌握因式分解方法,完全平方公式是解本题的关键.
2、.
【解析】
【分析】
综合利用提公因式法和完全平方公式进行因式分解即可得.
【详解】
解:原式
.
【点睛】
本题考查了因式分解,熟练掌握因式分解的各方法是解题关键.
3、另一个因式为(2x+13),k的值为65.
【解析】
【分析】
设另一个因式为(2x+a),根据题意列出等式,利用系数对应相等列出得到关于a和k的方程求解即可.
【详解】
解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a)
则2x2+3x﹣k=2x2+(a﹣10)x﹣5a
∴,
解得:a=13,k=65.
故另一个因式为(2x+13),k的值为65.
【点睛】
此题考查了因式分解和整式乘法的关系,解题的关键是根据题意设出另一个因式列出等式求解.
4、
【解析】
【分析】
先提取公因式y,再根据平方差公式进行二次分解即可求得答案.
【详解】
解:
故答案为:.
【点睛】
本题考查了提公因式法,公式法分解因式,解题的关键是注意分解要彻底.
5、 (1)2(x-4)(x+1)
(2)
【解析】
【分析】
(1)先去括号,再提公因式2,最后利用十字相乘法解题;
(2)先分组,再结合平方差公式、完全平方公式解题.
(1)
2x(x-3)-8=2x2-6x-8=2(x2-3x-4)=2(x-4)(x+1)
(2)
a2-b2-6a+9= a2 -6a+9-b2
=
【点睛】
本题考查因式分解,是重要考点,涉及平方差公式、完全平方公式,掌握相关知识是解题关键.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试练习题,共16页。试卷主要包含了如果x2+kx﹣10=,多项式分解因式的结果是,当n为自然数时,,对于有理数a,b,c,有等内容,欢迎下载使用。
这是一份数学七年级下册第十一章 因式分解综合与测试复习练习题,共17页。试卷主要包含了下列因式分解正确的是,多项式分解因式的结果是等内容,欢迎下载使用。
这是一份初中第十一章 因式分解综合与测试课时训练,共17页。试卷主要包含了分解因式2a2,下列因式分解正确的是,下列多项式,已知实数x,y满足等内容,欢迎下载使用。