初中数学冀教版七年级下册第八章 整式乘法综合与测试课后作业题
展开
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试课后作业题,共19页。试卷主要包含了利用如图①所示的长为a,计算的结果,下列计算正确的是,已知,,则下列关系成立的是,计算a2•等内容,欢迎下载使用。
冀教版七年级数学下册第八章整式的乘法难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、人类的遗传物质是DNA,其中最短的22号染色体含 30000000个核苷酸,30000000用科学记数法表示为( )A.3×106 B.3×107 C.3×108 D.0.3×1082、计算的结果是( )A. B. C. D.3、下列计算正确的是( ).A. B.C. D.4、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )A. B.C. D.5、计算的结果( )A. B. C. D.6、影片《长津湖》表现了志愿军战士不惧强敌敢于战斗的精神,敢于胜利的英雄气概.电影上映不到两个月,含预售票房已近57亿元,数据57亿用科学记数法表示为( )A.57×108 B.5.7×1010 C.0.57×1010 D.5.7×1097、下列计算正确的是 ( )A. B.C. D.8、已知,,则下列关系成立的是( )A.m+1=5n B.n=2m C.m+1=n D.2m=5+n9、计算a2•(﹣a2)3的结果是( )A.a7 B.a8 C.﹣a8 D.﹣a710、若,则的值为( )A. B.8 C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、计算:______.2、母亲节来临之际,某花店购进大量的康乃馨、百合、玫瑰,打算采用三种不同方式搭配成花束,分别是“心之眷恋”、“佳人如兰”、“守候”,三种花束的数量之比为2:3:5,每束花束的总成本为组成花束的康乃馨、百合、玫瑰成本之和(包装成本忽略不计).“心之眷恋”花束包含康乃馨6支、百合1支、玫瑰3支,“佳人如兰”花束包含康乃馨2支、百合2支、玫瑰6支.每束“心之眷恋”的成本是每支康乃馨成本的15倍,销售的利润率是60%;每束“佳人如兰”的售价是成本的倍:每束“守候”在成本的基础上提价70%标价后打9折出售,获利为每支康乃馨成本的5.3倍.为了促进这三种花束的销售,商家在每束花束中分别赠送一支康乃馨作为礼物,销售结束时,这些花束全部卖完,则商家获得的总利润率为___.3、若,,则________.4、比较大小[(﹣2)3]2___(﹣22)3.(填“>”,“<”或“=”)5、根据国家统计局的数据,2021年的第一季度,我国的国内生产总值接近250000亿元,增幅达到了18.3%.数据250000用科学记数法表示为____.三、解答题(5小题,每小题10分,共计50分)1、计算:(1)22+(﹣33)﹣3×(﹣11);(2)()×(﹣24);(3)2a2b(3a2﹣ab﹣1)+2a3b2;(4);(5)先化简,再求值:3a2﹣2(a2﹣ab)+(b2﹣2ab),其中a=﹣1,b=22、阅读理解:已知a+b=﹣4,ab=3,求a2+b2的值.解:∵a+b=﹣4,∴(a+b)2=(﹣4)2.即a2+2ab+b2=16.∵ab=3,∴a2+b2=10.参考上述过程解答:(1)已知a﹣b=﹣3,ab=﹣2.求式子(a﹣b)(a2+b2)的值;(2)若m﹣n﹣p=﹣10,(m﹣p)n=﹣12,求式子(m﹣p)2+n2的值.3、计算:(1)(2)(3)4、阅读以下材料:苏格兰数学家纳皮尔(J.Npler,1550-1617年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若(且),那么x叫做以a为底N的对数,记作,比如指数式可以转化为对数式,对数式可以转化为指数式.我们根据对数的定义可得到对数的一个性质:,理由如下:设,,则,,∴,由对数的定义得.又∵,∴.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:① ,② ,③ ;(2)求证:;(3)拓展运用:计算.5、计算:(1)(2) -参考答案-一、单选题1、B【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:30000000=3×107.故选:B.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.2、D【解析】【分析】利用单项式除以单项式法则,即可求解.【详解】解:.故选:D【点睛】本题主要考查了单项式除以单项式,熟练掌握单项式除以单项式法则是解题的关键.3、B【解析】【分析】分别利用合并同类项、同底数幂相除、积的乘方与幂的乘方、同底数幂相乘逐一分析即可.【详解】A. 不是同类项,不能合并 ,不正确,故选项A不符合题意;B. 计算正确,故选项B符合题意;C. ,计算不正确,故选项C不符合题意;D.,计算不正确,故选项D不符合题意.故选B.【点睛】本题考查整式的运算,掌握合并同类项、同底数幂相乘、积的乘方与幂的乘方、同底数幂相除的法则是解题的关键.4、A【解析】【分析】整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.【详解】∵大正方形边长为:,面积为:;1个小正方形的面积加上4个矩形的面积和为:;∴.故选:A.【点睛】此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.5、A【解析】【分析】利用幂的乘方计算即可求解.【详解】解:.故选:.【点睛】本题考查了幂的乘方,掌握(am)n=amn是解决本题的关键.6、D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:57亿=5700000000=5.7×109.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.7、C【解析】【分析】根据幂的乘方、积的乘方、单项式乘单项式、单项式乘多项式等知识,即可完成.【详解】A、,故计算错误;B、,故计算错误;C、,故计算正确;D、,故计算错误.故选:C【点睛】本题考查了幂的运算及整式的乘法,熟练掌握它们的运算法则是关键,但在单项式乘多项式中,千万不要漏乘.8、A【解析】【分析】利用积的乘方、幂的乘方把32n=6化成25n=6,2m=3化成2m+1=6,再比较求解即可.【详解】解:∵32n=6,∴25n=6,∵2m=3,∴2m×2=3×2,即2m+1=6,∴2m+1=25n,∴m+1=5n,故选:A.【点睛】本题主要考查了积的乘方、幂的乘方,关键是掌握计算法则,并能熟练应用.9、C【解析】【分析】根据同底数幂的乘法及幂的乘方可直接进行求解.【详解】解:;故选C.【点睛】本题主要考查同底数幂的乘法及幂的乘方,熟练掌握同底数幂的乘法及幂的乘方是解题的关键.10、D【解析】【分析】根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可.【详解】解:,,,,,,解得:,,.故选:D.【点睛】本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键.二、填空题1、【解析】【分析】根据同底数幂的乘法,可得答案.【详解】解:原式.故答案为:.【点睛】本题考查了负整数指数幂,利用同底数幂的乘法计算是解题关键.2、59.67%【解析】【分析】设康乃馨、百合、玫瑰的单价分别为x,y,z,由心之春恋的成本得y+3z=9x,佳人如兰的成本为20x,佳人如兰的利润为:()×20x=15x,由守候的利润为5.3x,得守候的成本为10x,求出总成本及总利润,根据利润率公式得到答案.【详解】解:∵三种花束的数量比固定后单种花束的数量并不影响总利润率,∴按题目顺序设三种花束分别为2,3,5束,设康乃馨、百合、玫瑰的单价分别为x,y,z,则心之春恋的成本为:6x+y+3z=15x,∴y+3z=9x,佳人如兰的成本为:2x+2y+6z=2x+2(y+3z)=20x,佳人如兰的利润为:()×20x=15x, 由题意得守候的利润为5.3x,守候的成本为:, ∴总成本为2×15x+3×20x+5×10x+1(2+3+5)x=150x,∵总利润为:2×9x+3×15x+5×5.3x=89.5x,∴总利润率为:. 故答案为:59.67%.【点睛】此题考查了列代数式,整式的混合运算,正确理解题意,掌握利润问题的计算公式正确解答是解题的关键.3、12【解析】【分析】由变形为,再把和代入求值即可.【详解】解:,,.故答案为:12.【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是将变形为.4、>【解析】【分析】利用幂的乘方和积的乘方先计算[(-2)3]2与(-22)3,再比较大小得结论.【详解】解:∵[(-2)3]2=(-2)3×2=(-2)6=26,(-22)3=-26,又∵26>-26,∴[(-2)3]2>(-22)3.故答案为:>.【点睛】本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方法则是解决本题的关键.5、2.5×105【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【详解】解:250000=2.5×105.故答案为:2.5×105.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.三、解答题1、 (1)(2)(3)(4)(5),【解析】【分析】(1)根据有理数的混合运算进行计算即可;(2)根据乘法分配律进行计算即可;(3)根据整式的混合运算进行计算即可;(4)根据去分母,去括号,移项合并同类项,化系数为1的步骤解一元一次方程即可;(5)根据整式的加减运算先化简再求值即可(1)22+(﹣33)﹣3×(﹣11)(2)()×(﹣24)(3)2a2b(3a2﹣ab﹣1)+2a3b2(4)解得(5)3a2﹣2(a2﹣ab)+(b2﹣2ab)当a=﹣1,b=2时,原式【点睛】本题考查了有理数的混合运算,整式的化简求值,解一元一次方程,单项式乘以多项式,正确的计算是解题的关键.2、 (1)(2)3、 (1)-9(2)(3)【解析】【分析】(1)原式根据有理数的乘方、负整数指数幂和零次幂的运算法则化简各数后再进行加减运算即可得到答案;(2)原式先根据积的乘方和幂的乘方运算法则、单项式的乘除法运算法则化简各项后再合并即可;(3)原式运用单项式乘以多项式与多项式乘以多项式运算法则将括号展开,再合并即可.(1)=-1+1-9=-9(2)==(3)==【点睛】本题考查了整式的混合运算,熟练掌握整式的混合运算法则是解答本题的关键.4、 (1)①6;②3;③0(2)见解析(3)2【解析】【分析】(1)利用对数的定义,即可求解;(2)设,,则,,可得,从而得到,即可求证;(3)根据对数的定义,代入即可求解.(1)解:①∵ ,∴;②∵ ∴;③∵ ,∴;(2)设,,则,,∴,由对数的定义得.又∵∴;(3) .【点睛】本题主要考查了幂的运算,同底数幂相除,明确题意,理解对数的定义是解题的关键.5、 (1)(2)【解析】【分析】由多项式乘多项式的法则计算即可.(1)==;(2)==【点睛】本题考查了多项式乘多项式,一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即.注意①要用一个多项式的每一项分别乘以另一个多项式的每一项,不能有遗漏②多项式乘多项式,实际上是转化为单项式乘单项式的运算来完成的③多项式的每一项都包括其前面的符号,并作为项的一部分参与运算④多项式与多项式相乘的结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积⑤结果中若有同类项,则要合并,所得的结果必须化为最简的形式.
相关试卷
这是一份初中数学冀教版七年级下册第八章 整式乘法综合与测试课后作业题,共19页。试卷主要包含了若,,则代数式的值是,下列计算正确的是,已知是完全平方式,则的值为等内容,欢迎下载使用。
这是一份数学冀教版第八章 整式乘法综合与测试巩固练习,共17页。试卷主要包含了已知ax2+24x+b=,下列计算正确的是,若,则的值是,下列各式中,不正确的是等内容,欢迎下载使用。
这是一份2021学年第八章 整式乘法综合与测试测试题,共15页。试卷主要包含了下列计算正确的是,计算 等于等内容,欢迎下载使用。