2021学年第七章 相交线与平行线综合与测试练习
展开冀教版七年级数学下册第七章相交线与平行线章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,一定能推出的条件是( )
A. B. C. D.
2、下列说法错误的是( )
A.经过两点,有且仅有一条直线
B.平面内过一点有且只有一条直线与已知直线垂直
C.两点之间的所有连线中,线段最短
D.平面内过一点有且只有一条直线与已知直线平行
3、如图,下列给定的条件中,不能判定的是( )
A. B. C. D.
4、下列各组图形中,能够通过平移得到的一组是( )
A. B.
C. D.
5、如图,已知∠1=50°,要使a∥b,那么∠2等于( )
A.40° B.130° C.50° D.120°
6、如图,,交于点,,,则的度数是( )
A.34° B.66° C.56° D.46°
7、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )
A.两点之间,线段最短
B.两点之间,直线最短
C.两点确定一条直线
D.直线外一点与直线上各点连接的所有线段中,垂线段最短
8、把直线a沿水平方向平移4cm,平移后的线为直线b,则直线a与直线b之间的距离为( )
A.等于4cm B.小于4cm
C.大于4cm D.不大于4cm
9、如图,下列四个选项中不能判断AD∥BC的是( )
A. B.
C. D.
10、如图,直线AB、CD相交于点O,OE平分∠AOD,若∠DOE=36°,则∠BOC的度数为( )
A.72° B.90° C.108° D.144°
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、两条平行直线被第三条直线所截,内错角相等.
简称:两直线平行,内错角_________.
如图,因为a∥b (已知) ,
所以∠1=_____(两直线平行,内错角相等) .
2、一般地,将一个图形依次沿两个坐标轴方向平移所得到的图形,可以通过将原来的图形作_________平移得到.
对一个图形进行平移,这个图形上所有点的坐标都要发生相应的_________;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
3、如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为 _____.
4、如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=58°,则∠BED的度数为______.
5、如图,将一副三角板按如图所示的方式摆放,AC∥DF,BC与EF相交于点G,则∠CGF度数为 _____度.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知AEBF,AC⊥AE,BD⊥BF,AC与BD平行吗?补全下面的解答过程(理由或数学式).
解:∵AEBF,
∴∠EAB= .( )
∵AC⊥AE,BD⊥BF,
∴∠EAC=90°,∠FBD=90°.
∴∠EAC=∠FBD( )
∴∠EAB﹣ =∠FBG﹣ ,
即∠1=∠2.
∴ ( ).
2、如图,已知于点,于点,,试说明.
解:因为(已知),
所以( ).
同理.
所以( ).
即.
因为(已知),
所以( ).
所以( ).
3、(1)探究:如图1,ABCDEF,试说明.
(2)应用:如图2,ABCD,点在、之间,与交于点,与交于点.若,,则的大小是多少?
(3)拓展:如图3,直线在直线、之间,且ABCDEF,点、分别在直线、上,点是直线上的一个动点,且不在直线上,连接、.若,则 度(请直接写出答案).
4、如图,方格纸中每个小正方形的边长都是1.
(1)过点P画,PM与直线AB相交于点M;
(2)若点N在图中的格点上(不与点A重合),且直线NA与直线AC垂直,这样的格点(图中)有______个;
(3)连接PB、PC,则四边形PBAC的面积是______.
5、如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.
-参考答案-
一、单选题
1、D
【解析】
【分析】
平行线的判定方法有:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行;根据平行线的判定方法逐一判定即可.
【详解】
解:A.和是直线和被直线所截所成的内错角,
不能推出,故本选项不符合题意;
B.和是直线和被直线所截所成的内错角,
不能推出,故本选项不符合题意;
C.和是直线和被直线所截所成的内错角,但不能判定,
不能判定,
和是直线和被直线所截所成的同位角,但不能判定,
不能判定,
不能推出,故本选项不符合题意;
D.和是直线和被直线所截所成的同位角,
能推出,故本选项符合题意;
故选:D.
【点睛】
本题主要考查了平行线的判定,熟记同位角相等,两直线平行是解决问题的关键.
2、D
【解析】
【分析】
根据垂线的性质、线段的性质、直线的性质、平行公理判断下列选项.
【详解】
解:由垂线的性质、线段的性质、直线的性质可知、、正确;
A、根据直线的性质可知选项正确,不符合题意;
B、根据垂线的性质可知选项正确,不符合题意;
C、根据线段的性质可知选项正确,不符合题意;
D、由平行公理可知选项不正确,需要保证该点不在已知直线上,符合题意;
故选:D.
【点睛】
本题主要考查了垂线的性质、线段的性质、直线的性质、平行公理,解题的关键是掌握相关的概念.
3、A
【解析】
【分析】
根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.
【详解】
解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;
B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;
C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;
D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;
故选A.
【点睛】
本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.
4、B
【解析】
【分析】
根据平移的性质对各选项进行判断.
【详解】
A、左图是通过翻折得到右图,不是平移,故不符合题意;
B、上图可通过平移得到下图,故符合题意;
C、不能通过平移得到,故不符合题意;
D、不能通过平移得到,故不符合题意;
故选B.
【点睛】
本题主要考查平移的性质,熟练掌握平移的性质是解题的关键.
5、C
【解析】
【分析】
先假设a∥b,由平行线的性质即可得出∠2的值.
【详解】
解:假设a∥b,
∴∠1=∠2,
∵∠1=50°,
∴∠2=50°.
故选:C.
【点睛】
本题考查的是平行线的判定定理,即同位角相等,两直线平行.
6、C
【解析】
【分析】
由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C
【点睛】
本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.
7、D
【解析】
【分析】
根据垂线段最短即可完成.
【详解】
根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确
故选:D
【点睛】
本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.
8、D
【解析】
【分析】
根据平行线间的距离的定义解答即可.
【详解】
解:分两种情况:
如果直线a与水平方向垂直,则直线a与b之间的距离为4cm,
若果直线a与水平方向不垂直, 则直线a与b之间的距离小于4cm
直线a与直线b之间的距离不大于4cm.
故选D.
【点睛】
本题主要考查了直线的平移和平行线之间的距离, 平行线之间的距离是指从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两平行线间的距离.另外,掌握分类讨论思想是正确解答本题关键.
9、D
【解析】
【分析】
直接利用平行线的判定定理分析得出答案.
【详解】
解:A、已知,那么AD∥BC,故此选项不符合题意;
B、已知,那么AD∥BC,故此选项不符合题意;
C、已知,那么AD∥BC,故此选项不符合题意;
D、已知,那么AB∥CD,不能推出AD∥BC,故此选项符合题意;
故选:D.
【点睛】
本题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.
10、A
【解析】
【分析】
由角平分线的定义可求得∠AOD的度数,由对顶角相等即可求得结果.
【详解】
∵OE平分∠AOD,
∴∠AOD=2∠DOE=2×36°=72°,
∵∠BOC与∠AOE是对顶角,
∴∠BOC的度数为72°,
故选:A
【点睛】
本题考查了角平分线的定义、对顶角相等等知识,掌握这两个知识是解题的关键.
二、填空题
1、 相等 ∠2
【解析】
略
2、 一次 变化
【解析】
略
3、50°##50度
【解析】
【分析】
由AB∥CD∥EF,得到∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,则∠ECD=180°-∠CEF=75°,由此即可得到答案.
【详解】
解:∵AB∥CD∥EF,
∴∠BCD=∠ABC=125°,∠CEF+∠ECD=180°,
∴∠ECD=180°-∠CEF=75°,
∴∠BCE=∠BCD-∠ECD=50°,
故答案为:50°.
【点睛】
本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.
4、32°
【解析】
略
5、30
【解析】
【分析】
先证明再证明再利用平行线的性质与对顶角的性质可得答案.
【详解】
解:如图,记交于点
由题意得:
故答案为:
【点睛】
本题考查的是平行线的判定与性质,掌握“两直线平行,同位角相等与同旁内角互补,两直线平行”是解本题的关键.
三、解答题
1、∠FBG;两直线平行,同位角相等;等量代换;∠EAC;∠FBD;AC;BD;同位角相等,两直线平行
【解析】
【分析】
由平行线的性质得∠EAB=∠FBD+∠2,再证∠1=∠2,然后由平行线的判定即可得出结论.
【详解】
∵AE∥BF,
∴∠EAB=∠FBG(两直线平行,同位角相等).
∵AC⊥AE,BD⊥BF,
∴∠EAC=90°,∠FBD=90°.
∴∠EAC=∠FBD(等量代换),
∴∠EAB﹣∠EAC=∠FBG﹣∠FBD,
即∠1=∠2.
∴AC∥BD(同位角相等,两直线平行).
故答案为:∠FBG;两直线平行,同位角相等;等量代换;∠AEC,∠FBD;AC,BD,同位角相等,两直线平行.
【点睛】
本题考查平行线的判定与性质,掌握平行线的判定与性质是解题的关键.
2、垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行
【解析】
【分析】
根据垂直定义得出,求出,根据平行线的判定推出即可.
【详解】
解:因为(已知),
所以(垂直的定义),
同理.
所以(等量代换),
即.
因为(已知),
所以(等式的性质,
所以(内错角相等,两直线平行).
故答案为:垂直的定义;等量代换;等式的性质1;内错角相等,两直线平行
【点睛】
本题考查了垂直定义和平行线的判定的应用,熟练掌握平行线的判定是解题关键.
3、(1)见解析;(2)60°;(3)70或290
【解析】
【分析】
(1)由可得,,,则;
(2)利用(1)中的结论可知,,则可得的度数为,由对顶角相等可得;
(3)结合(1)中的结论可得,注意需要讨论是钝角或是锐角时两种情况.
【详解】
解:(1)如图1,,
,,
,
.
(2)由(1)中探究可知,,
,且,
,
;
(3)如图,当为钝角时,
由(1)中结论可知,,
;
当为锐角时,如图,
由(1)中结论可知,,
即,
综上,或.
故答案为:70或290.
【点睛】
本题主要考查平行线的性质与判定,难度适中,观察图形,推出角之间的和差关系是解题关键.
4、(1)见解析;(2)3个;(3)10.5
【解析】
【分析】
(1)直接利用网格结合平行线的判定方法得出答案;
(2)利用数形结合的思想画出图形即可;
(3)利用四边形PBAC所在矩形减去周围三角形面积得出答案.
【详解】
解:(1)如图所示:
(2)这样的格点N共有3个,如图所示,
故答案为:3.
(3)四边形PBAC的面积为:3×7-×1×2-×5×2-×1×5-×2×2=10.5.
【点睛】
本题主要考查了应用设计与作图,正确借助网格分析是解题关键.
5、59°
【解析】
【分析】
求出∠DEG,证明∠DEG+∠CEF=90°即可解决问题.
【详解】
解:∵AB∥CD,∠B=62°,
∴∠BED=∠B=62°,
∵EG平分∠BED,
∴∠DEG=∠BED=31°,
∵EG⊥EF,
∴∠FEG=90°,
∴∠DEG+∠CEF=90°,
∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.
【点睛】
本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
冀教版七年级下册第七章 相交线与平行线综合与测试课时训练: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试课时训练,共24页。试卷主要包含了以下命题是假命题的是,下列命题不正确的是,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。
冀教版七年级下册第七章 相交线与平行线综合与测试习题: 这是一份冀教版七年级下册第七章 相交线与平行线综合与测试习题,共24页。试卷主要包含了如图,直线b等内容,欢迎下载使用。
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试综合训练题,共22页。试卷主要包含了如图,直线a,下列说法中不正确的是,下列说法正确的有等内容,欢迎下载使用。