终身会员
搜索
    上传资料 赚现金
    2022年最新精品解析沪教版七年级数学第二学期第十四章三角形单元测试试题(精选)
    立即下载
    加入资料篮
    2022年最新精品解析沪教版七年级数学第二学期第十四章三角形单元测试试题(精选)01
    2022年最新精品解析沪教版七年级数学第二学期第十四章三角形单元测试试题(精选)02
    2022年最新精品解析沪教版七年级数学第二学期第十四章三角形单元测试试题(精选)03
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试单元测试课时作业

    展开
    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试单元测试课时作业,共32页。试卷主要包含了已知等内容,欢迎下载使用。

    沪教版七年级数学第二学期第十四章三角形单元测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )

    A.10° B.20° C.30° D.50°
    2、如图,AD是的角平分线,,垂足为F.若,,则的度数为( )

    A.35° B.40° C.45° D.50°
    3、下列长度的三条线段能组成三角形的是(  )
    A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 11
    4、如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为(  )

    A.∠B=∠ADC B.2∠B=∠ADC
    C.∠B+∠ADC=180° D.∠B+∠ADC=90°
    5、如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是(  )

    A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE
    6、等腰三角形的一个角是80°,则它的一个底角的度数是( )
    A.50° B.80° C.50°或80° D.100°或80°
    7、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为(  )

    A.15° B.20° C.25° D.30°
    8、已知:如图,D、E分别在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,则∠BDC的度数是(  )

    A.95° B.90° C.85° D.80°
    9、如图,在中,AD是角平分线,且,若,则的度数是( )

    A.45° B.50° C.52° D.58°
    10、下列各组线段中,能构成三角形的是( )
    A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、6
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,点B(0,4),点A为x轴上一动点,连接AB.以AB为边作等腰Rt△ABE,(B、A、E按逆时针方向排列,且∠BAE为直角),连接OE.当OE最小时,点E的纵坐标为______.
    2、如图,为△ABC的中线,为△的中线,为△的中线,……按此规律,为△的中线.若△ABC的面积为8,则△的面积为_______________.

    3、如图,在中,,,E为BC延长线上一点,与的平分线相交于点D,则∠D的度数为______.

    4、如图,AD⊥BC,∠1=∠B,∠C=65°,∠BAC=__________

    5、如图,已知△ABC是等边三角形,边长为3,G是三角形的重心,那么GA =______.

    三、解答题(10小题,每小题5分,共计50分)
    1、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:
    已知:∠AOB.
    求作:∠A′O′B′,使∠A′O′B′=∠AOB.
    作图:
    (1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;
    (2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
    (3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;
    (4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.

    请你根据以上材料完成下列问题:
    (1)完成下面证明过程(将正确答案写在相应的横线上).
    证明:由作图可知,在△O′C′D′和△OCD中,

    ∴△O′C′D′≌ ,
    ∴∠A′O′B'=∠AOB.
    (2)这种作一个角等于已知角的方法依据是 .(填序号)
    ①AAS;②ASA;③SSS;④SAS
    2、已知:如图,∠ABC=∠DCB,∠1=∠2.求证AB=DC.

    3、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E.求证:△AED是等腰三角形.

    4、如图,AB=AD,AC=AE,BC=DE,点E在BC上.

    (1)求证:∠EAC=∠BAD;
    (2)若∠EAC=42°,求∠DEB的度数.
    5、如图,△ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动.
    (1)在运动过程中△DEF是什么形状的三角形,并说明理由;
    (2)若运动到某一时刻时,BE=4,∠DEC=150°,求等边△ABC的周长;

    6、如图,是的角平分线,于点.

    (1)用尺规完成以下基本作图:过点作于点,连接交于点.(不写作法,保留作图痕迹)
    (2)在(1)中所作的图形中,求证:.
    7、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.

    8、中,CD平分,点E是BC上一动点,连接AE交CD于点D.

    (1)如图1,若,AE平分,则的度数为______;
    (2)如图2,若,,,则的度数为______;
    (3)如图3,在BC的右侧过点C作,交AE延长线于点F,且,.试判断AB与CF的位置关系,并证明你的结论.
    9、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
    (1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
    (2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
    (3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则   .(直接写出结果)

    10、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.


    -参考答案-
    一、单选题
    1、B
    【分析】
    由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.
    【详解】
    解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,
    ∴∠ABD=∠BDC−∠A=50°−30°=20°,
    ∵BD是△ABC的角平分线,
    ∴∠DBC=∠ABD=20°,
    ∵DE∥BC,
    ∴∠EDB=∠DBC=20°,
    故选:B.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.
    2、B
    【分析】
    根据三角形的内角和求出∠ACB=90°,利用三角形全等,求出DC=DE,再利用外角求出答案.
    【详解】
    解:∵∠CAB=40°,∠B=50°,
    ∴∠ACB=180°−40°−50°=90°,
    ∵CE⊥AD,
    ∴∠AFC=∠AFE=90°,
    ∵AD是△ABC的角平分线,
    ∴∠CAD=∠EAD=×40°=20°,
    又∵AF=AF,
    ∴△ACF≌△AEF(ASA)
    ∴AC=AE,
    ∵AD=AD,∠CAD=∠EAD,
    ∴△ACD≌△AED (SAS),
    ∴DC=DE,
    ∴∠DCE=∠DEC,
    ∵∠ACE=90°−20°=70°,
    ∴∠DCE=∠DEC=∠ACB−∠ACE=90°−70°=20°,
    ∴∠BDE=∠DCE+∠DEC=20°+20°=40°,
    故选:B.
    【点睛】
    考查角平分线、全等三角形的判定和性质、三角形的内角和等知识,根据三角形的内角和求出相应各个角的度数是解决问题的关键.
    3、C
    【分析】
    根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.
    【详解】
    解:A.∵3+4<8,
    ∴不能组成三角形,故本选项不符合题意;
    B.∵4+4<10,
    ∴不能组成三角形,故本选项不符合题意;
    C.∵5+6>10,
    ∴能组成三角形,故本选项符合题意;
    D.∵5+6=11,
    ∴不能组成三角形,故本选项不符合题意;
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.
    4、C
    【分析】
    由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得△ABC≌△AEC,从而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,证得∠B=∠CDE,即可得出结果.
    【详解】
    解:在射线AD上截取AE=AB,连接CE,如图所示:

    ∵∠BAD=90°,AC平分∠BAD,
    ∴∠BAC=∠EAC,
    在△ABC与△AEC中,

    ∴△ABC≌△AEC(SAS),
    ∴BC=EC,∠B=∠AEC,
    ∵CB=CD,
    ∴CD=CE,
    ∴∠CDE=∠CED,
    ∴∠B=∠CDE,
    ∵∠ADC+∠CDE=180°,
    ∴∠ADC+∠B=180°.
    故选:C.
    【点睛】
    本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE.
    5、A
    【分析】
    根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.
    【详解】
    解:∵AF=DC,
    ∴AF+FC=DC+FC,
    即AC=DF,
    A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;
    B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;
    C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;
    D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;
    故选:A.
    【点睛】
    本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.
    6、C
    【分析】
    已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可.
    【详解】
    解:等腰三角形的一个角是80°,
    当80º为底角时,它的一个底角是80º,
    当80º为顶角时,它的一个底角是,
    则它的一个底角是50º或80º.
    故选:C.
    【点睛】
    本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键.
    7、A
    【分析】
    先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.
    【详解】
    解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,
    ∴∠EFD=60°,∠ABC=45°,
    ∵BC∥AD,
    ∴∠EFD=∠FBC=60°,
    ∴∠ABF=∠FBC-∠ABC=15°,
    故选A.

    【点睛】
    本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.
    8、C
    【分析】
    根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A+∠C,代入求出即可.
    【详解】
    解:在△ABE和△ACD中,

    ∴△ABE≌△ACD(SAS),
    ∴∠C=∠B,
    ∵∠B=25°,
    ∴∠C=25°,
    ∵∠A=60°,
    ∴∠BDC=∠A+∠C=85°,
    故选C.
    【点睛】
    本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
    9、A
    【分析】
    根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.
    【详解】
    解:∵AD是角平分线,,
    ∴∠DCA==30°,
    ∵AD=AC,
    ∴∠C=(180°-∠DCA)÷2=75°,
    ∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,
    故选:A.
    【点睛】
    本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.
    10、C
    【分析】
    根据三角形的三边关系定理逐项判断即可得.
    【详解】
    解:三角形的三边关系定理:任意两边之和大于第三边.
    A、,不能构成三角形,此项不符题意;
    B、,不能构成三角形,此项不符题意;
    C、,能构成三角形,此项符合题意;
    D、,不能构成三角形,此项不符题意;
    故选:C.
    【点睛】
    本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.
    二、填空题
    1、-2
    【分析】
    过E作EF⊥x轴于F,由三垂直模型,得EF=OA,AF=OB,设A(a,0),可求得E(a+4,a),点E在直线y=x-4上,当OE⊥CD时,OE最小,据此求出坐标即可.
    【详解】
    解:如图,过E作EF⊥x轴于F,
    ∵∠AOB=∠EFA=∠BAE=90°,
    ∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,
    ∴∠ABO=∠EAF,
    ∵AB=AE,
    ∴△ABO≌△EAF,
    ∴EF=OA,AF=OB=4,
    取点C(4,0),点D(0,-4),
    ∴∠OCD=45°,
    ∵CF=4- OF,OA=4- OF,
    ∴CF=OA =EF,
    ∴∠ECF=45°,
    ∴点E在直线CD上,当OE⊥CD时,OE最小,
    此时△EFO和△ECO为等腰Rt△,
    ∴OF=EF=2,
    此时点E的坐标为:(2,-2).
    故答案为:-2

    【点睛】
    本题考查了全等三角形的判定与性质,解题关键是确定点E运动的轨迹,确定点E的位置.
    2、
    【分析】
    根据三角形的中线性质,可得△的面积=,△的面积=,……,进而即可得到答案.
    【详解】
    由题意得:△的面积=,△的面积=,……,△的面积==.
    故答案是:.
    【点睛】
    本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键.
    3、20°度
    【分析】
    根据角平分线的性质得到,再利用三角形外角的性质计算.
    【详解】
    解:∵与的平分线相交于点D,
    ∴,
    ∵∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,
    ∴∠D=∠DCE-∠DBC=,
    故答案为:20°.
    【点睛】
    此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.
    4、70°
    【分析】
    先根据AD⊥BC可知∠ADB=∠ADC=90°,再根据直角三角形的性质求出∠1与∠DAC的度数,由∠BAC=∠1+∠DAC即可得出结论.
    【详解】
    ∵AD⊥BC,
    ∴∠ADB=∠ADC=90°,
    ∴∠DAC=90°﹣65°=25°,∠1=∠B=45°,
    ∴∠BAC=∠1+∠DAC=45°+25°=70°.
    【点睛】
    本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
    5、
    【分析】
    延长AG交BC于D,根据重心的概念得到AD⊥BC,BD=DC=BC=,根据勾股定理求出AD,根据重心的概念计算即可.
    【详解】
    解:延长AG交BC于D,
    ∵G是三角形的重心,
    ∴AD⊥BC,BD=DC=BC=,
    由勾股定理得,AD=,
    ∴GA=AD=,

    故答案为:.
    【点睛】
    本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
    三、解答题
    1、
    (1)CD,O′D′,△OCD,
    (2)③
    【分析】
    (1)根据SSS证明△D′O′C′≌△DOC,可得结论;
    (2)根据SSS证明三角形全等.
    (1)
    证明:由作图可知,在△D′O′C′和△DOC中,

    ∴△O′C′D′≌△OCD(SSS),
    ∴∠A′O′B′=∠AOB.
    故答案为:CD,O′D′,△OCD,
    (2)
    解:上述证明过程中利用三角形全等的方法依据是SSS,
    故答案为:③
    【点睛】
    本题考查三角形综合题,考查了三角形全等的判定和性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
    2、见解析
    【分析】
    由“ASA”可证△ABO≌△DCO,可得结论.
    【详解】
    证明:如图,记的交点为

    ∵∠ABC=∠DCB,∠1=∠2,
    又∵∠OBC=∠ABC−∠1,∠OCB=∠DCB−∠2,
    ∴∠OBC=∠OCB,
    ∴OB=OC,
    在△ABO和△DCO中,,
    ∴△ABO≌△DCO(ASA),
    ∴AB=DC.
    【点睛】
    本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.
    3、见解析
    【分析】
    根据等腰三角形的性质得到∠BAD=∠CAD,根据平行线的性质得到∠ADE=∠BAD,等量代换得到∠ADE=∠CAD于是得到结论.
    【详解】
    解:∵△ABC是等腰三角形,AB=AC,AD是底边BC上的中线,
    ∴∠BAD=∠CAD,
    ∵DE∥AB,
    ∴∠ADE=∠BAD,
    ∴∠ADE=∠CAD,
    ∴AE=ED,
    ∴△AED是等腰三角形.
    【点睛】
    本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.
    4、(1)见解析;(2)42°
    【分析】
    (1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
    (2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
    【详解】
    (1)证明:∵AB=AD,AC=AE,BC=DE,
    ∴△ABC≌△ADE.
    ∴∠BAC=∠DAE.
    ∴∠BAC-∠BAE=∠DAE-∠BAE.
    即∠EAC=∠BAD;
    (2)解:∵AC=AE,∠EAC=42°,
    ∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
    ∵△ABC≌△ADE,
    ∴∠AED=∠C=69°,
    ∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
    【点睛】
    本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
    5、(1)△DEF是等边三角形,理由见解析(2)等边△ABC的周长为
    【分析】
    (1)利用△DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明△DEF是等边三角形.
    (2)利用题(1)的条件即∠DEC=150°,得出是含角的直角三角形,求出,最后求解出等边△ABC的长,最后即可求出等边△ABC的周长.
    【详解】
    (1)解:△DEF是等边三角形,
    证明:由点D、E、F的运动情况可知:,
    △ABC是等边三角形,
    ,,
    ,

    在与中,



    同理可证,进而有,

    故△DEF是等边三角形.
    (2)解:由(1)可知△DEF是等边三角形,且,
    ,,,


    在中,,



    等边△ABC的周长为.
    【点睛】
    本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键.
    6、(1)见解析;(2)见解析.
    【分析】
    (1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;
    (2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.
    【详解】
    解:(1)如图,点F、G即为所求作的点;

    (2)是的角平分线,,,










    【点睛】
    本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
    7、答案见解析
    【分析】
    AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
    【详解】
    解:如图,
    ……
    [答案不唯一]
    【点睛】
    本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
    8、(1)40°;(2)10°;(3)AB∥CF,理由见解析
    【分析】
    (1)根据三角形的角和定理和角平分线的定义可求得∠BAC+∠ACB=140°即可求解;
    (2)根据三角形的外角性质求得∠B+∠BAE=47°即可求解;
    (3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到∠FCG=2∠F,再根据角平分线的定义和等角的余角相等得到∠BCF=2∠F,则有∠B=∠BCF,根据平行线在判定即可得出结论.
    【详解】
    解:(1)∵∠ADC=110°,
    ∴∠DAC+∠DCA=180°-110°=70°,
    ∵AE平分∠BAC,CD平分∠ACB,
    ∴∠BAC=2∠DAC,∠ACB=2∠DCA,
    ∴∠BAC+∠ACB=2(∠DAC+∠DCA)=140°,
    ∴∠B=180°-(∠BAC+∠ACB)=180°-140°=40°,
    故答案为:40°;
    (2)∵∠ADC=∠DCE+∠DEC=100°,∠DCE=53°,
    ∴∠DEC=100°-53°=47°,
    ∴∠B+∠BAE=∠DEC=47°,
    ∵∠B-∠BAE=27°,
    ∴∠BAE=10°,
    故答案为:10°;
    (3)AB∥CF,理由为:
    如图,延长AC到G,
    ∵AC=CF,
    ∴∠F=∠FAC,
    ∴∠FCG=∠F+∠FAC=2∠F,
    ∵CF⊥CD,
    ∴∠BCF+∠BCD=90°,∠FCG+∠ACD=90°,
    ∵CD平分∠ACB,
    ∴∠BCD=∠ACD,
    ∴∠BCF=∠FCG=2∠F,
    ∵∠B=2∠F,
    ∴∠B=∠BCF,
    ∴AB∥CF.

    【点睛】
    本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键.
    9、(1)证明见解析;(2)证明见解析;(3)或
    【分析】
    (1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;
    (2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;
    (3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.
    【详解】
    (1)证明:∵FD⊥AC,
    ∴∠FDA=90°,
    ∴∠DFA+∠DAF=90°,
    同理,∠CAE+∠DAF=90°,
    ∴∠DFA=∠CAE,
    在△AFD和△EAC中,

    ∴△AFD≌△EAC(AAS),
    ∴DF=AC,
    ∵AC=BC,
    ∴FD=BC;
    (2)作FD⊥AC于D,
    由(1)得,FD=AC=BC,AD=CE,
    在△FDG和△BCG中,

    ∴△FDG≌△BCG(AAS),
    ∴DG=CG=1,
    ∴AD=2,
    ∴CE=2,
    ∵BC=AC=AG+CG=4,
    ∴E点为BC中点;
    (3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,
    BC=AC=4,CE=CB+BE=7,
    由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
    ∴CG=GD,AD=CE=7,
    ∴CG=DG=1.5,
    ∴AG=CG+AC=5.5,
    ∴,
    同理,当点E在线段BC上时,AG= AC -CG+=2.5,
    ∴,
    故答案为:或.
    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    10、见解析
    【分析】
    过A作AF⊥BC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案.
    【详解】
    证明:如图,过A作AF⊥BC于F,

    ∵AB=AC,AD=AE,
    ∴BF=CF,DF=EF,
    ∴BF-DF=CF-EF,
    ∴BD=CE.
    【点睛】
    本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评: 这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评,共29页。试卷主要包含了尺规作图等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课堂检测: 这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课堂检测,共34页。试卷主要包含了下列三个说法等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时练习: 这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时练习,共34页。试卷主要包含了已知等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map