


数学七年级下册第十四章 三角形综合与测试当堂达标检测题
展开沪教版七年级数学第二学期第十四章三角形定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )
A.50° B.60° C.40° D.30°
2、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )
A. B. C. D.
3、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
A. B. C. D.
4、如图,已知为的外角,,,那么的度数是( )
A.30° B.40° C.50° D.60°
5、如图,是等边三角形,点在边上,,则的度数为( ).
A.25° B.60° C.90° D.100°
6、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于( )
A.56° B.34° C.44° D.46°
7、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )
A.110° B.70° C.55° D.35°
8、如图,,AC,BD相交于点O.添加一个条件,不一定能使≌的是( )
A. B.
C. D.
9、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是( )
A.8 B.10 C.9 D.16
10、如图,和全等,且,对应.若,,,则的长为( )
A.4 B.5 C.6 D.无法确定
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,上午9时,一艘船从小岛A处出发,以12海里/时的速度向正北方向航行,10时40分到达小岛B处,若从灯塔C处分别测得小岛A、B在南偏东34°、68°方向,则小岛B处到灯塔C的距离是______海里.
2、如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.
3、如图,∠ACB=90°,AC=BC,AD⊥CD于点D,BE⊥CD于点E,有下面四个结论:① △CAD≌△BCE; ② ∠ABE=∠BAD; ③ AB=CD; ④ CD=AD+DE.其中所有正确结论的序号是____________.
4、在中,若,则_______.
5、如图,方格纸中是9个完全相同的正方形,则∠1+∠2的值为 _____.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在中,、分别是上的高和中线,,,求的长.
2、如图,是等边三角形,D点是BC上一点,,于点E,CE交AD于点P.求的度数.
3、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.
4、在四边形ABCD中,,点E在直线AB上,且.
(1)如图1,若,,,求AB的长;
(2)如图2,若DE交BC于点F,,求证:.
5、如图,在中,是角平分线,,.
(1)求的度数;
(2)若,求的度数.
6、如图,已知△ABC≌△DEB,点E在AB上,AC与BD交于点F,AB=6,BC=3,∠C=55°,∠D=25°.
(1)求AE的长度;
(2)求∠AED的度数.
7、如图,AD是的高,CE是的角平分线.若,,求的度数.
8、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.
9、如图,在长方形ABCD中,AD=3,DC=5,动点M从A点出发沿线段AD—DC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD—DA以每秒3个单位长度的速度向终点A运动.ME⊥PQ于点E,NF⊥PQ于点F,设运动的时间为秒.
(1)在运动过程中当M、N两点相遇时,求t的值.
(2)在整个运动过程中,求DM的长.(用含t的代数式表示)
(3)当DEM与DFN全等时,请直接写出所有满足条件的DN的长.
10、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.
(1)求的度数;
(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.
-参考答案-
一、单选题
1、A
【分析】
根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.
【详解】
解: 将△OAB绕点O逆时针旋转80°得到△OCD,
∠A的度数为110°,∠D的度数为40°,
故选A
【点睛】
本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.
2、A
【分析】
根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
【详解】
解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,
∴
即
故选A
【点睛】
本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
3、C
【分析】
根据三角形的三边关系可得,再解不等式可得答案.
【详解】
解:设三角形的第三边为,由题意可得:
,
即,
故选:C.
【点睛】
本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.
4、B
【分析】
根据三角形的外角性质解答即可.
【详解】
解:∵∠ACD=60°,∠B=20°,
∴∠A=∠ACD−∠B=60°−20°=40°,
故选:B.
【点睛】
此题考查三角形的外角性质,关键是根据三角形外角性质解答.
5、D
【分析】
由等边三角形的性质及三角形外角定理即可求得结果.
【详解】
∵是等边三角形
∴∠C=60°
∴∠ADB=∠DBC+∠C=40°+60°=100°
故选:D
【点睛】
本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键.
6、C
【分析】
依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
【详解】
解:如图:
∵l1∥l2,∠1=46°,
∴∠3=∠1=46°,
又∵l3⊥l4,
∴∠2=90°﹣46°=44°,
故选:C.
【点睛】
本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
7、C
【分析】
根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
【详解】
解:∵AB=AC,D是BC的中点,
∴AD⊥BC,
∵∠B=35°,
∴∠BAD=90°−35°=55°.
故选:C.
【点睛】
本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
8、C
【分析】
直接利用直角三角形全等的判定定理(定理)即可判断选项;先根据等腰三角形的性质可得,再根据三角形全等的判定定理(定理)即可判断选项;直接利用三角形全等的判定定理(定理)即可判断选项,由此即可得出答案.
【详解】
解:当添加条件是时,
在和中,,
,则选项不符题意;
当添加条件是时,
,
在和中,,
,则选项不符题意;
当添加条件是时,
在和中,,
,则选项不符题意;
当添加条件是时,不一定能使,则选项符合题意;
故选:C.
【点睛】
本题考查了三角形全等的判定、等腰三角形的性质,熟练掌握三角形全等的判定方法是解题关键.
9、C
【分析】
延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:,,得出,求解即可.
【详解】
解:如图,延长BD交AC于点E,
∵AD平分,,
∴,,
在和中,
,
∴,
∴,
∴,,
∴,
故选:C.
【点睛】
题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.
10、A
【分析】
全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可.
【详解】
∵和全等,,对应
∴
∴AB=DF=4
故选:A.
【点睛】
本题考查了全等三角形的概念及性质,应注意①对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系②可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等③全等三角形有传递性.
二、填空题
1、20
【分析】
根据所给的角的度数,容易证得是等腰三角形,而的长易求,所以根据等腰三角形的性质,的值也可以求出.
【详解】
解:据题意得,,,
,
,
,
,
(海里).
故答案是:20.
【点睛】
本题考查了等腰三角形的性质及方向角的问题,解题的关键是由已知得到三角形是等腰三角形,要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.
2、3
【分析】
根据题意依据等腰三角形的性质,即可得到BD=BC,进而分析计算即可得出结论.
【详解】
解:由题可得,AR平分∠BAC,
又∵AB=AC,
∴AD是三角形ABC的中线,
∴BD=BC=×6=3.
故答案为:3.
【点睛】
本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
3、①②④
【分析】
由∠ACB=90°,BE⊥CD,AD⊥CD,得到∠ACD+∠BCE=90°,∠ADC=∠CEB=90°,则∠ACD+∠CAD=90°,AD∥BE,即可判断②,即可利用AAS证明△CAD≌△BCE,即可判断①;则AD=CE,得到CD=CE+DE=AD+DE,即可判定④;由AB>AC>CD,得到AB≠CD,即可判断③.
【详解】
解:∵∠ACB=90°,BE⊥CD,AD⊥CD,
∴∠ACD+∠BCE=90°,∠ADC=∠CEB=90°,
∴∠ACD+∠CAD=90°,AD∥BE,
∴∠CAD=∠BCE,∠ABE=∠BAD,故②正确;
又∵AC=CB,
∴△CAD≌△BCE(AAS),故①正确;
∴AD=CE,
∴CD=CE+DE=AD+DE,故④正确,
∵AB>AC>CD,
∴AB≠CD,故③错误;
故答案为:①②④.
【点睛】
本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知相关知识是解题的关键.
4、65°65度
【分析】
由三角形的内角和定理,得到,即可得到答案;
【详解】
解:在中,,
∵,
∴,
∴;
故答案为:65°.
【点睛】
本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.
5、
【分析】
如图(见解析),先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,由此即可得出答案.
【详解】
解:如图,在和中,,
,
,
,
故答案为:.
【点睛】
本题考查了三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.
三、解答题
1、6cm
【分析】
先根据中线的定义结合已知条件求得AB,然后再运用三角形的面积公式求解即可.
【详解】
解:∵是边上的中线,
∴是的中点,
∴,
∵,
∴,
∴=.
【点睛】
本题主要考查了三角形的中线的定义以及三角形的面积公式,掌握三角形中线的定义成为解答本题的关键.
2、
【分析】
由题意易得,,则有,然后可得,进而可证,则有,最后问题可求解.
【详解】
解:∵是等边三角形,
∴,,
∵,
∴,
∴,
∴,
∵,
∴,
∴(SAS),
∴,
∵,
∴.
【点睛】
本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.
3、
【分析】
由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.
【详解】
解:∵,,,
∴,
∵BD是的角平分线,
∴,
在和中,
,
∴,
∴,
∵,
∴的周长.
【点睛】
本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.
4、(1)5;(2)证明见解析
【分析】
(1)推出∠ADE=∠BEC,根据AAS证△AED≌△CEB,推出AE=BC,BE=AD,代入求出即可;
(2)推出∠A=∠EBC,∠AED=∠BCE,根据AAS证△AED≌△BCE,推出AD=BE,AE=BC,即可得出结论.
【详解】
(1)解:∵∠DEC=∠A=90°,
∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,
∴∠ADE=∠BEC,
∵,∠A=90°,
∴∠B+∠A=180°,
∴∠B=∠A=90°,
在△AED和△CEB中
,
∴△AED≌△BCE(AAS),
∴AE=BC=3,BE=AD=2,
∴AB=AE+BE=2+3=5.
(2)证明:∵,
∴∠A=∠EBC,
∵∠DFC=∠AEC,
∠DFC=∠BCE+∠DEC,∠AEC=∠AED+∠DEC,
∴∠AED=∠BCE,
在△AED和△BCE中
,
∴△AED≌△BCE(AAS),
∴AD=BE,AE=BC,
∵BC=AE=AB+BE=AB+AD,
即AB+AD=BC.
【点睛】
本题考查了三角形的外角的性质,全等三角形的性质和判定,平行线的性质等知识点的运用,掌握“利用证明两个三角形全等”是解本题的关键.
5、
(1);
(2).
【分析】
(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
(2)根据垂直得出,然后根据三角形内角和定理即可得.
(1)
解:∵,,
∴,
∵AD是角平分线,
∴,
∴;
(2)
∵,
∴,
∴,
∴.
【点睛】
题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.
6、(1);(2).
【分析】
(1)先根据全等三角形的性质可得,再根据线段的和差即可得;
(2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.
【详解】
解:(1)∵,
∴,
∵,
∴;
(2)∵,
∴,
∵,
∴.
【点睛】
本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.
7、
【分析】
AD是的高,有;由知;CE是的角平分线可得;,;在中,.
【详解】
解:∵AD是的高
∴
∵
∴
∵CE是的角平分线
∴
∵
∴
∴在中,.
【点睛】
本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
8、见解析
【分析】
过A作AF⊥BC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案.
【详解】
证明:如图,过A作AF⊥BC于F,
∵AB=AC,AD=AE,
∴BF=CF,DF=EF,
∴BF-DF=CF-EF,
∴BD=CE.
【点睛】
本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.
9、(1)2;(2)当0≤t≤3时,DM=3-t,当3<t≤8时,DM=t-3;(3)2或1
【分析】
(1)根据题意得: ,解得:,即可求解;
(2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,当3<t≤8时,DM=t-3,即可求解;
(3)根据ME⊥PQ,NF⊥PQ,可得∠DEM=∠DFN=90°,再由∠ADC=90°,可得∠DME =∠FDN,从而得到当DEM与DFN全等时,DM=DN,根据题意可得M到达点D时, ,M到达点C时, ,N到达点D时, ,N到达点A时,,然后分两种情况:当时和当时,即可求解.
【详解】
解:(1)根据题意得: ,解得:,
即在运动过程中当M、N两点相遇时,t的值为2;
(2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,
当3<t≤8时,DM=t-3;
(3)∵ME⊥PQ,NF⊥PQ,
∴∠DEM=∠DFN=90°,
∴∠EDM+ ∠DME =90°,
∵∠ADC=90°,
∴∠EDM+∠FDN =90°,
∴∠DME =∠FDN,
∴当DEM与DFN全等时,DM=DN,
∵M到达点D时, ,M到达点C时, ,
N到达点D时, ,N到达点A时,,
当时,DM=3-t,CN=3t,则DN=5-3t,
∴3-t=5-3t,解得:t=1,
∴此时DN=5-3t=2,
当时,DM=3-t,DN=3t-5,
∴3-t=3t-5,解得: ,
∴DN=3t-5=1,
综上所述,当DEM与DFN全等时,所有满足条件的DN的长为2或1.
【点睛】
本题主要考查了全等三角形的判定和性质,动点问题,利用分类讨论思想解答是解题的关键.
10、(1)70°;(2)15km/h
【分析】
(1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;
(2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.
【详解】
解:(1)根据题意得∠BAC=70°,∠ABC=40°,
∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;
(2)∵∠BAC=∠ACB=70°,
∴BC=AB=75km,
∴轮船的速度为75÷5=15(km/h).
【点睛】
本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.
初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共28页。试卷主要包含了如图,点D,三角形的外角和是等内容,欢迎下载使用。
数学第十四章 三角形综合与测试同步训练题: 这是一份数学第十四章 三角形综合与测试同步训练题,共32页。试卷主要包含了已知,下列四个命题是真命题的有等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评: 这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评,共29页。试卷主要包含了尺规作图等内容,欢迎下载使用。