搜索
    上传资料 赚现金
    精品试卷沪教版七年级数学第二学期第十四章三角形定向攻克试题(含解析)
    立即下载
    加入资料篮
    精品试卷沪教版七年级数学第二学期第十四章三角形定向攻克试题(含解析)01
    精品试卷沪教版七年级数学第二学期第十四章三角形定向攻克试题(含解析)02
    精品试卷沪教版七年级数学第二学期第十四章三角形定向攻克试题(含解析)03
    还剩34页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试综合训练题

    展开
    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试综合训练题,共37页。试卷主要包含了下列三个说法等内容,欢迎下载使用。

    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、三个等边三角形的摆放位置如图所示,若,则的度数为
    A.B.C.D.
    2、如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是( )
    A.BC=EFB.AB=DEC.∠B=∠ED.∠ACB=∠DFE
    3、如图,在中,、分别平分、,过点作直线平行于,分别交、于点、,当大小变化时,线段和的大小关系是
    A.B.C.D.不能确定
    4、等腰三角形的一个顶角是80°,则它的底角是( ).
    A.40°B.50°C.60°D.70°
    5、如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC上取一点P,使得△PAB是等腰三角形,则符合条件的点P有( )
    A.1个B.2个C.3个D.4个
    6、下列三个说法:
    ①有一个内角是30°,腰长是6的两个等腰三角形全等;
    ②有一个内角是120°,底边长是3的两个等腰三角形全等;
    ③有两条边长分别为5,12的两个直角三角形全等.
    其中正确的个数有( ).
    A.3B.2C.1D.0
    7、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
    A.3cmB.6cmC.10cmD.12cm
    8、如图,,于点,与交于点,若,则等于( )
    A.20°B.50°C.70°D.110°
    9、如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:①;②;③为等边三角形;④.其中正确的结论个数是( )
    A.1个B.2个C.3个D.4个
    10、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是( )
    A.3cmB.4cmC.7cmD.10cm
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,∠ACB=90°,AC=BC,AD⊥CD于点D,BE⊥CD于点E,有下面四个结论:① △CAD≌△BCE; ② ∠ABE=∠BAD; ③ AB=CD; ④ CD=AD+DE.其中所有正确结论的序号是____________.
    2、如图,点,在直线上,且,且,过,,分别作,,,若,,,则的面积是______.
    3、如图,点E,F分别为线段BC,DB上的动点,BE=DF.要使AE+AF最小值,若用作图方式确定E,F,则步骤是 _____.
    4、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.
    5、如图,在边长为4,面积为的等边中,点、分别是、边的中点,点是边上的动点,求的最小值___.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,,,E为BC中点,DE平分.
    (1)求证:平分;
    (2)求证:;
    (3)求证:.
    2、阅读以下材料,并按要求完成相应的任务:
    任务:
    如图3,在四边形中,,,,以为顶点的,、与、边分别交于、两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.
    3、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.
    4、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.
    (1)当∠BAD=60°时,求∠CDE的度数;
    (2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.
    (3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.
    5、已知:
    (1)O是∠BAC内部的一点.
    ①如图1,求证:∠BOC>∠A;
    ②如图2,若OA=OB=OC,试探究∠BOC与∠BAC的数量关系,给出证明.
    (2)如图3,当点O在∠BAC的外部,且OA=OB=OC,继续探究∠BOC与∠BAC的数量关系,给出证明.
    6、如图,四边形中,,,于点.
    (1)如图1,求证:;
    (2)如图2,延长交的延长线于点,点在上,连接,且,求证:;
    (3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长.
    7、已知:如图,在△ABC中,AB=3,AC=5.
    (1)直接写出BC的取值范围是 .
    (2)若点D是BC边上的一点,∠BAC=85°,∠ADC=140°,∠BAD=∠B,求∠C.
    8、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
    (1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
    (2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
    (3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则 .(直接写出结果)
    9、如图,CE⊥AB于点E,BF⊥AC于点F,BD=CD.
    (1)求证:△BDE≌△CDF;
    (2)求证:AE=AF.
    10、针对于等腰三角形三线合一的这条性质,老师带领同学们做了进一步的猜想和证明,提问:如果一个三角形中,一个角的平分线和它所对的边的中线重合,那么这个三角形是等腰三角形.
    已知:在△ABC中,AD 平分∠CAB,交BC 边于点 D,且CD=BD,
    求证:AB=AC.
    以下是甲、乙两位同学的作法.
    甲:根据角平分线和中线的性质分别能得出一组角等和一组边等,再加一组公共边,可证△ACD≌△ABD,所以这个三角形为等腰三角形;
    乙:延长AD到E,使DE=AD,连接BE,可证△ACD≌△EBD,依据已知条件可推出AB=AC,所以这个三角形为等腰三角形
    (1)对于甲、乙两人的作法,下列判断正确的是( );
    A.两人都正确 B.甲正确,乙错误 C.甲错误,乙正确
    (2)选择一种你认为正确的作法,并证明.
    -参考答案-
    一、单选题
    1、A
    【分析】
    利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.
    【详解】
    解:,,




    故选:.
    【点睛】
    本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.
    2、A
    【分析】
    根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.
    【详解】
    解:∵AF=DC,
    ∴AF+FC=DC+FC,
    即AC=DF,
    A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;
    B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;
    C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;
    D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;
    故选:A.
    【点睛】
    本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.
    3、C
    【分析】
    由平行线的性质和角平分线的定义可得,则,同理可得,则,可得答案.
    【详解】
    解:,

    平分,



    同理,

    即.
    故选:C
    【点睛】
    本题主要考查了等腰三角形的判定,平行线的性质,角平分线的定义,熟练掌握等腰三角形的判定定理,平行线的性质定理,角平分线的定义是解题的关键.
    4、B
    【分析】
    依据三角形的内角和是180°以及等腰三角形的性质即可解答.
    【详解】
    解:(180°-80°)÷2
    =100°÷2
    =50°;
    答:底角为50°.
    故选:B.
    【点睛】
    本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.
    5、B
    【分析】
    根据等腰三角形的判定定理,结合图形即可得到结论.
    【详解】
    解:以点A、B为圆心,AB长为半径画弧,交直线BC于两个点,然后作AB的垂直平分线交直线BC于点,如图所示:
    ∵∠C=90°,∠A=30°,
    ∴,
    ∵,
    ∴是等边三角形,
    ∴点重合,
    ∴符合条件的点P有2个;
    故选B.
    【点睛】
    本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键.
    6、C
    【分析】
    根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可.
    【详解】
    解:①当一个是底角是30°,一个是顶角是30°时,两三角形就不全等,故本选项错误;
    ②有一个内角是120°,底边长是3的两个等腰三角形全等,本选项正确;
    ③当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,
    故选:C.
    【点睛】
    本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.
    7、C
    【分析】
    设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
    【详解】
    解:设第三根木棒的长度为cm,则


    所以A,B,D不符合题意,C符合题意,
    故选C
    【点睛】
    本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
    8、C
    【分析】
    由与,即可求得的度数,又由,根据两直线平行,同位角相等,即可求得的度数.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴.
    故选:C.
    【点睛】
    题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.
    9、D
    【分析】
    由SAS即可证明,则①正确;有∠CAE=∠CDB,然后证明△ACM≌△DCN,则②正确;由CM=CN,∠MCN=60°,即可得到为等边三角形,则③正确;由AD∥CE,则∠DAO=∠NEO=∠CBN,由外角的性质,即可得到答案.
    【详解】
    解:∵△DAC和△EBC均是等边三角形,
    ∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
    ∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,∠MCN=180°-∠ACD-∠BCE=60°,
    在△ACE和△DCB中,

    ∴△ACE≌△DCB(SAS),则①正确;
    ∴AE=BD,∠CAE=∠CDB,
    在ACM和△DCN中,

    ∴△ACM≌△DCN(ASA),
    ∴CM=CN,;则②正确;
    ∵∠MCN=60°,
    ∴为等边三角形;则③正确;
    ∵∠DAC=∠ECB=60°,
    ∴AD∥CE,
    ∴∠DAO=∠NEO=∠CBN,
    ∴;则④正确;
    ∴正确的结论由4个;
    故选D.
    【点睛】
    本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键.
    10、C
    【分析】
    设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
    【详解】
    解:设三角形的第三边是xcm.则
    7-3<x<7+3.
    即4<x<10,
    四个选项中,只有选项C符合题意,
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.
    二、填空题
    1、①②④
    【分析】
    由∠ACB=90°,BE⊥CD,AD⊥CD,得到∠ACD+∠BCE=90°,∠ADC=∠CEB=90°,则∠ACD+∠CAD=90°,AD∥BE,即可判断②,即可利用AAS证明△CAD≌△BCE,即可判断①;则AD=CE,得到CD=CE+DE=AD+DE,即可判定④;由AB>AC>CD,得到AB≠CD,即可判断③.
    【详解】
    解:∵∠ACB=90°,BE⊥CD,AD⊥CD,
    ∴∠ACD+∠BCE=90°,∠ADC=∠CEB=90°,
    ∴∠ACD+∠CAD=90°,AD∥BE,
    ∴∠CAD=∠BCE,∠ABE=∠BAD,故②正确;
    又∵AC=CB,
    ∴△CAD≌△BCE(AAS),故①正确;
    ∴AD=CE,
    ∴CD=CE+DE=AD+DE,故④正确,
    ∵AB>AC>CD,
    ∴AB≠CD,故③错误;
    故答案为:①②④.
    【点睛】
    本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知相关知识是解题的关键.
    2、15
    【分析】
    根据AAS证明△EFA≌△AGB,△BGC≌△CHD,再根据全等三角形的性质以及三角形的面积公式求解即可.
    【详解】
    解:(1)∵EF⊥FG,BG⊥FG,
    ∴∠EFA=∠AGB=90°,
    ∴∠AEF+∠EAF=90°,
    又∵AE⊥AB,即∠EAB=90°,
    ∴∠BAG+∠EAF=90°,
    ∴∠AEF=∠BAG,
    在△AEC和△CDB中,

    ∴△EFA≌△AGB(AAS);
    同理可证△BGC≌△CHD(AAS),
    ∴AG=EF=6,CG=DH=4,
    ∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.
    故答案为:15.
    【点睛】
    本题考查了三角形全等的性质和判定,解题的关键是灵活运用所学知识解决问题.
    3、①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点
    【分析】
    按照①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点的步骤作图即可得.
    【详解】
    解:步骤是①连接,作;
    ②以点为圆心、长为半径画弧,交于点;
    ③连接交于点;
    ④以点为圆心、长为半径画弧,交于点;
    如图,点即为所求.
    故答案为:①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点.
    【点睛】
    本题考查了作一个角等于已知角、两点之间线段最短、作线段、全等三角形的判定与性质等知识点,熟练掌握尺规作图的方法是解题关键.
    4、##
    【分析】
    由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.
    【详解】
    解: 把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,

    ∠1=70°,


    故答案为:
    【点睛】
    本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.
    5、
    【分析】
    连接,交于点,连接,则的最小值为,再由已知求出的长即可.
    【详解】
    解:连接,交于点,连接,
    是等边三角形,是边中点,
    点与点关于对称,


    的最小值为,
    是的中点,

    ,的面积为,

    的最小值为,
    故答案为:.
    【点睛】
    本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是解题的关键.
    三、解答题
    1、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
    (2)由(1)即可用三线合一定理证明;
    (3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
    【详解】
    解:(1)如图所示,延长DE交AB延长线于F,
    ∵∠B=∠C=90°,
    ∴AB∥CD,
    ∴∠CDE=∠F,
    ∵DE平分∠ADC,
    ∴∠CDE=∠ADE,
    ∴∠ADF=∠F,
    ∴AD=AF,
    ∴△ADF是等腰三角形,
    ∵E是BC的中点,
    ∴CE=BE,
    ∴△CDE≌△BFE(AAS),
    ∴DE=FE,
    ∴E是DF的中点,
    ∴AE平分∠BAD;
    (2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
    ∴AE⊥DE;
    (3)∵△CDE≌△BFE,
    ∴CD=BF,
    ∴AD=AF=AB+BF=AB+CD.
    【点睛】
    本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
    2、成立,证明见解析
    【分析】
    根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF .
    【详解】
    解:成立.
    证明:将绕点顺时针旋转,得到,
    ,,,,,
    ,、、三点共线,

    ,,,


    【点睛】
    本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.
    3、25°
    【分析】
    直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
    【详解】
    ∵AB=AC,∠A=50°,
    ∴∠ABC=∠ACB=65°,
    ∵CD⊥BC于点D,
    ∴∠BCD的度数为:180°−90°−65°=25°.
    【点睛】
    此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
    4、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.
    【分析】
    (1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;
    (2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;
    (3)设∠BAD=x,仿照(2)的解法计算.
    【详解】
    解:(1)∵∠ADC是△ABD的外角,
    ∴∠ADC=∠BAD+∠B=105°,
    ∠DAE=∠BAC﹣∠BAD=30°,
    ∴∠ADE=∠AED=75°,
    ∴∠CDE=105°﹣75°=30°;
    (2)∠BAD=2∠CDE,
    理由如下:设∠BAD=x,
    ∴∠ADC=∠BAD+∠B=45°+x,
    ∠DAE=∠BAC﹣∠BAD=90°﹣x,
    ∴∠ADE=∠AED=,
    ∴∠CDE=45°+x﹣=x,
    ∴∠BAD=2∠CDE;
    (3)设∠BAD=x,
    ∴∠ADC=∠BAD+∠B=∠B+x,
    ∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,
    ∴∠ADE=∠AED=∠C+x,
    ∴∠CDE=∠B+x﹣(∠C+x)=x,
    ∴∠BAD=2∠CDE.
    【点睛】
    本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系
    5、(1)①见解析;②∠BOC=2∠A,见解析;(2)∠BOC=2∠BAC,见解析
    【分析】
    (1)①连接AO并延长AO至点E,根据三角形外角性质解答即可;
    ②延长AO至点E,根据三角形外角性质解答即可;
    (2)根据三角形外角性质和三角形内角和定理解答即可.
    【详解】
    证明:(1)①如图所示:连接AO并延长AO至点E,则∠BOE>∠BAO,∠COE>∠CAO,
    ∴∠BOC>∠A;
    ②∠BOC与∠BAC的数量关系:∠BOC=2∠A;
    证明:如图所示,延长AO至点E,则∠BOE=∠BAO+∠B,∠COE=∠CAO+∠C,
    ∵OA=OB=OC,
    ∴∠BAO=∠B,∠CAO=∠C,
    ∴∠BOC=∠COE+∠COE=∠BAO+∠B+∠CAO+∠C=2(∠BAO+∠CAO)=2∠BAC;
    (2)∠BOC与∠BAC的数量关系:∠BOC=2∠BAC;
    证明:如图所示,设∠B=x,
    ∵OA=OB=OC,
    ∴∠B=∠BAO=x,∠C=∠OAC=∠BAC+x;
    在△BEO和△AEC中,有:∠B+∠BOC=∠C+∠CAE;
    即x+∠BOC=∠CAE+x+∠CAE=2∠BAC+x;
    即∠BOC=2∠BAC.
    【点睛】
    此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答.
    6、(1)见解析;(2)见解析;(3)2
    【分析】
    (1)过点B作于点Q,根据AAS证明△得,再证明四边形是矩形得BQ=CG,从而得出结论;
    (2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;
    (3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和△得可求出,从而可得结论.
    【详解】
    解:(1)证明:过点B作于点Q,如图1

    又,
    ∴△
    ∴四边形是矩形

    (2)在GF上截取GH=GE,连接AH,如图2,

    (3)过点A作于点P,在FC上截取,连接,如图3,
    由(1)、(2)知,,





    ∴∠

    ∴∠


    ∴∠

    ∴AC是EH的垂直平分线,


    又∵

    ∴∠
    ∴∠
    ∵∠,
    ∴∠




    ∵∠
    ∴,即

    ∵,即

    在和中,
    AH=AM∠HAB=∠MADAB=AD
    ∴△




    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    7、(1)2<BC<8;(2)25°
    【分析】
    (1)根据三角形三边关系解答即可;
    (2)根据三角形外角性质和三角形内角和解答即可.
    【详解】
    解:(1)∵AC-AB<BC<AC+AB,AB=3,AC=5.
    ∴2<BC<8,
    故答案为:2<BC<8
    (2)∵∠ADC是△ABD的外角
    ∴∠ADC=∠B+∠BAD=140
    ∵∠B=∠BAD
    ∴∠B=
    ∵∠B+∠BAC+∠C=180
    ∴∠C=180﹣∠B﹣∠BAC
    即∠C=180﹣70﹣85=25
    【点睛】
    本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.
    8、(1)证明见解析;(2)证明见解析;(3)或
    【分析】
    (1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;
    (2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;
    (3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.
    【详解】
    (1)证明:∵FD⊥AC,
    ∴∠FDA=90°,
    ∴∠DFA+∠DAF=90°,
    同理,∠CAE+∠DAF=90°,
    ∴∠DFA=∠CAE,
    在△AFD和△EAC中,

    ∴△AFD≌△EAC(AAS),
    ∴DF=AC,
    ∵AC=BC,
    ∴FD=BC;
    (2)作FD⊥AC于D,
    由(1)得,FD=AC=BC,AD=CE,
    在△FDG和△BCG中,

    ∴△FDG≌△BCG(AAS),
    ∴DG=CG=1,
    ∴AD=2,
    ∴CE=2,
    ∵BC=AC=AG+CG=4,
    ∴E点为BC中点;
    (3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,
    BC=AC=4,CE=CB+BE=7,
    由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
    ∴CG=GD,AD=CE=7,
    ∴CG=DG=1.5,
    ∴AG=CG+AC=5.5,
    ∴,
    同理,当点E在线段BC上时,AG= AC -CG+=2.5,
    ∴,
    故答案为:或.
    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    9、(1)见解析;(2)见解析
    【分析】
    (1)根据CE⊥AB,BF⊥AC就可以得出∠BED=∠CFD=90°,就可以由AAS得出结论;
    (2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出△AFB≌△AEC就可以得出结论.
    【详解】
    证明:(1)∵CE⊥AB,BF⊥AC,
    ∴∠BED=∠CFD=90°,
    在△BED和△CFD中,

    ∴△BED≌△CFD(AAS);
    (2)∵△BED≌△CFD,
    ∴DE=DF,
    ∴BD+DF=CD+DE,
    ∴BF=CE,
    在△ABF和△ACE中,

    ∴△ABF≌△ACE(AAS),
    ∴AE=AF.
    【点睛】
    本题考查了垂直的性质的运用,全等三角形的判定与性质的运用,等式的性质的运用,解答时证明三角形全等是关键.
    10、(1)C ;(2)见解析
    【分析】
    (1)甲同学证明的两个三角形全等,没有边边角的判定,故错误,而乙的证明则正确,因此可作出判断;
    (2)按照乙的分析方法进行即可.
    【详解】
    (1)甲同学证明的两个三角形全等,边边角不能判定两个三角形全等,故错误,而乙的证明则正确,
    故选C;
    (2)依据题意,延长AD至E,使DE=AD,连接BE,如图.
    ∵D为BC中点.
    ∴.
    在△CAD和△BED中
    ∴△CAD≌△BED(SAS).
    ∴,
    ∵AD平分∠BAC,



    ∴AB=AC
    ∴△ABC为等腰三角形
    【点睛】
    本题考查了全等三角形的判定与性质,等腰三角形的判定,关键是构造辅助线得到全等三角形.
    从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:
    如下图1,在正方形中,以为顶点的,、与、边分别交于、两点.易证得.
    大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、、三点共线,,进而可证明,故.
    相关试卷

    数学七年级下册第十四章 三角形综合与测试当堂达标检测题: 这是一份数学七年级下册第十四章 三角形综合与测试当堂达标检测题,共27页。试卷主要包含了如图,直线l1l2,被直线l3等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题: 这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题,共33页。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步达标检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步达标检测题,共35页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map