


初中沪教版 (五四制)第十四章 三角形综合与测试习题
展开沪教版七年级数学第二学期第十四章三角形专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知为的外角,,,那么的度数是( )
A.30° B.40° C.50° D.60°
2、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是( )
A.3cm B.4cm C.7cm D.10cm
3、如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为( )
A.21 B.24 C.27 D.30
4、如图,等腰中,,,于D,点O是线段AD上一点,点P是BA延长线上一点,若,则下列结论:①;②;③是等边三角形;④.其中正确的是( )
A.①③④ B.①②③ C.②③④ D.①②③④
5、如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为( )
A.∠B=∠ADC B.2∠B=∠ADC
C.∠B+∠ADC=180° D.∠B+∠ADC=90°
6、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
A.SSS B.SAS C.ASA D.AAS
7、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.
证法1:如图,
∵∠A=70°,∠B=63°,
且∠ACD=133°(量角器测量所得)
又∵133°=70°+63°(计算所得)
∴∠ACD=∠A+∠B(等量代换).
证法2:如图,
∵∠A+∠B+∠ACB=180°(三角形内角和定理),
又∵∠ACD+∠ACB=180°(平角定义),
∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).
∴∠ACD=∠A+∠B(等式性质).
下列说法正确的是( )
A.证法1用特殊到一般法证明了该定理
B.证法1只要测量够100个三角形进行验证,就能证明该定理
C.证法2还需证明其他形状的三角形,该定理的证明才完整
D.证法2用严谨的推理证明了该定理
8、已知:如图,D、E分别在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,则∠BDC的度数是( )
A.95° B.90° C.85° D.80°
9、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )
A.10° B.20° C.30° D.50°
10、如图,若绕点A按逆时针方向旋转40°后与重合,则( ) .
A.40° B.50° C.70° D.100
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知AB=3,AC=CD=1,∠D=∠BAC=90°,则△ACE的面积是 _____.
2、如图,已知△ABC是等边三角形,边长为3,G是三角形的重心,那么GA =______.
3、△ABC的高AD所在直线与高BE所在直线相交于点F且DF=CD,则∠ABC=______.
4、如图,中,,点在边上,,若,则的度数为_______.
5、如图,直线ED把分成一个和四边形BDEC,的周长一定大于四边形BDEC的周长,依据的原理是____________________________________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.
2、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
(1)如图1,点D在线段BC上.
①根据题意补全图1;
②∠AEF = (用含有的代数式表示),∠AMF= °;
③用等式表示线段MA,ME,MF之间的数量关系,并证明.
(2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.
3、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.
4、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,,.
(1)求证:;
(2)若,求BE的长.
5、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.
(1)求证:AB//CD;
(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;
(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.
6、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.
7、直线l经过点A,在直线l上方,.
(1)如图1,,过点B,C作直线l的垂线,垂足分别为D、E.求证:
(2)如图2,D,A,E三点在直线l上,若(为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明.
(3)如图3,过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作,使得,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.
8、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.
(1)△AMN是否是等腰三角形?说明理由;
(2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
①求证:△BPM是等腰三角形;
②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).
9、如图,AD为△ABC的角平分线.
(1)如图1,若BE⊥AD于点E,交AC于点F,AB=4,AC=7.则CF= ;
(2)如图2,CG⊥AD于点G,连接BG,若△ABG的面积是6,求△ABC的面积;
(3)如图3,若∠B=2∠C,AB=m,AC=n,则CD的长为 .(用含m,n的式子表示)
10、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,,P为上一点,当_______时,与是偏等积三角形;
(2)如图2,四边形是一片绿色花园,、是等腰直角三角形,.
①与是偏等积三角形吗?请说明理由;
②已知的面积为.如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G.若小路每米造价600元,请计算修建小路的总造价.
-参考答案-
一、单选题
1、B
【分析】
根据三角形的外角性质解答即可.
【详解】
解:∵∠ACD=60°,∠B=20°,
∴∠A=∠ACD−∠B=60°−20°=40°,
故选:B.
【点睛】
此题考查三角形的外角性质,关键是根据三角形外角性质解答.
2、C
【分析】
设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
【详解】
解:设三角形的第三边是xcm.则
7-3<x<7+3.
即4<x<10,
四个选项中,只有选项C符合题意,
故选:C.
【点睛】
本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.
3、C
【分析】
根据题意在AB上截取BE=BC,由“SAS”可证△CBD≌△EBD,可得∠CDB=∠BDE,∠C=∠DEB,可证∠ADE=∠AED,可得AD=AE,进而即可求解.
【详解】
解:如图,在AB上截取BE=BC,连接DE,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△CBD和△EBD中,
,
∴△CBD≌△EBD(SAS),
∴∠CDB=∠BDE,∠C=∠DEB,
∵∠C=2∠CDB,
∴∠CDE=∠DEB,
∴∠ADE=∠AED,
∴AD=AE,
∴△ABC的周长=AD+AE+BE+BC+CD=AB+AB+CD=27,
故选:C.
【点睛】
本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.
4、A
【分析】
①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.
【详解】
解:①如图1,连接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=∠BAC=×120°=60°,
∴OB=OC,∠ABC=90°﹣∠BAD=30°
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;
②由①知:∠APO=∠ABO,∠DCO=∠DBO,
∵点O是线段AD上一点,
∴∠ABO与∠DBO不一定相等,
则∠APO与∠DCO不一定相等,故②不正确;
③∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°﹣(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等边三角形,故③正确;
④如图2,在AC上截取AE=PA,
∵∠PAE=180°﹣∠BAC=60°,
∴△APE是等边三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,
在△OPA和△CPE中,
,
∴△OPA≌△CPE(SAS),
∴AO=CE,
∴AC=AE+CE=AO+AP,
∴AB=AO+AP,故④正确;
正确的结论有:①③④,
故选:A.
【点睛】
本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.
5、C
【分析】
由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得△ABC≌△AEC,从而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,证得∠B=∠CDE,即可得出结果.
【详解】
解:在射线AD上截取AE=AB,连接CE,如图所示:
∵∠BAD=90°,AC平分∠BAD,
∴∠BAC=∠EAC,
在△ABC与△AEC中,
,
∴△ABC≌△AEC(SAS),
∴BC=EC,∠B=∠AEC,
∵CB=CD,
∴CD=CE,
∴∠CDE=∠CED,
∴∠B=∠CDE,
∵∠ADC+∠CDE=180°,
∴∠ADC+∠B=180°.
故选:C.
【点睛】
本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE.
6、A
【分析】
根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
【详解】
解:三根木条即为三角形的三边长,
即为利用确定三角形,
故选:A.
【点睛】
题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
7、D
【分析】
利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.
【详解】
解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,
证法2才是用严谨的推理证明了该定理,
故A不符合题意,C不符合题意,D符合题意,
证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;
故选D
【点睛】
本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.
8、C
【分析】
根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A+∠C,代入求出即可.
【详解】
解:在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS),
∴∠C=∠B,
∵∠B=25°,
∴∠C=25°,
∵∠A=60°,
∴∠BDC=∠A+∠C=85°,
故选C.
【点睛】
本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
9、B
【分析】
由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.
【详解】
解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,
∴∠ABD=∠BDC−∠A=50°−30°=20°,
∵BD是△ABC的角平分线,
∴∠DBC=∠ABD=20°,
∵DE∥BC,
∴∠EDB=∠DBC=20°,
故选:B.
【点睛】
本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.
10、C
【分析】
根据旋转的性质,可得 , ,从而得到,即可求解.
【详解】
解:∵绕点A按逆时针方向旋转40°后与重合,
∴ , ,
∴.
故选:C
【点睛】
本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键.
二、填空题
1、##
【分析】
先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得.
【详解】
解:在和中,,
,
,
则的面积是,
故答案为:.
【点睛】
本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.
2、
【分析】
延长AG交BC于D,根据重心的概念得到AD⊥BC,BD=DC=BC=,根据勾股定理求出AD,根据重心的概念计算即可.
【详解】
解:延长AG交BC于D,
∵G是三角形的重心,
∴AD⊥BC,BD=DC=BC=,
由勾股定理得,AD=,
∴GA=AD=,
故答案为:.
【点睛】
本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
3、45°或135°
【分析】
根据题意,分两种情况讨论:①当为锐角三角形时;②当为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得.
【详解】
解:①如图所示:当为锐角三角形时,
∵,,
∴,
∴,,
∴,
在ΔBDF与中,
,
∴ΔBDF≅ΔADC,
∴,
∵,
∴;
②如图所示:当为钝角三角形时,
∵,,
∴,
∴,,
∴,
∵,
∴,
在ΔBDF与中,
,
∴ΔBDF≅ΔADC,
∴,
∵,
∴,
,
综合①②可得:为或,
故答案为:或.
【点睛】
题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键.
4、
【分析】
先求出∠EDC=35°,然后根据平行线的性质得到∠C=∠EDC=35°,再由直角三角形两锐角互余即可求解.
【详解】
解:∵∠1=145°,
∴∠EDC=35°,
∵DE∥BC,
∴∠C=∠EDC=35°,
又∵∠A=90°,
∴∠B=90°-∠C=55°,
故答案为:55°.
【点睛】
本题主要考查了平行线的性质,直角三角形两锐角互余,求出∠C的度数是解题的关键.
5、三角形两边之和大于第三边
【分析】
表示出和四边形BDEC的周长,再结合中的三边关系比较即可.
【详解】
解:的周长=
四边形BDEC的周长=
∵在中
∴
即的周长一定大于四边形BDEC的周长,
∴依据是:三角形两边之和大于第三边;
故答案为三角形两边之和大于第三边
【点睛】
本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.
三、解答题
1、25°
【分析】
直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
【详解】
∵AB=AC,∠A=50°,
∴∠ABC=∠ACB=65°,
∵CD⊥BC于点D,
∴∠BCD的度数为:180°−90°−65°=25°.
【点睛】
此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
2、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
【分析】
(1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
(2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
【详解】
解:(1)①补全图形如下图:
②∵∠CAE=∠DAC=,
∴∠BAE=30°+
∴∠FAE=2×(30°+)
∴∠AEF==60°-;
∵∠AMF=∠CAE+∠AEF=+60°-=60°,
故答案是:60°-,60°;
③MF=MA+ME.
证明:在FE上截取GF=ME,连接AG .
∵点D关于直线AC的对称点为E,
∴△ADC ≌△AEC.
∴∠CAE =∠CAD =.
∵∠BAC=30°,
∴∠EAN=30°+.
又∵点E关于直线AB的对称点为F,
∴AB垂直平分EF.
∴AF=AE,∠FAN=∠EAN =30°+,
∴∠F=∠AEF=.
∴∠AMG =.
∵AF=AE,∠F=∠AEF, GF=ME,
∴△AFG ≌△AEM.
∴AG =AM.
又∵∠AMG=,
∴△AGM为等边三角形.
∴MA=MG.
∴MF=MG+GF=MA+ME.
(2),理由如下:
如图1所示,
∵点E与点F关于直线AB对称,
∴∠ANM=90°,NE=NF,
又∵∠NAM=30°,
∴AM=2MN,
∴AM=2NE+2EM =MF+ME,
∴MF=AM-ME;
如图2所示,
∵点E与点F关于直线AB对称,
∴∠ANM=90°,NE=NF,
∵∠NAM=30°,
∴AM=2NM,
∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
∴MF=MA-ME;
综上所述:MF=MA-ME.
【点睛】
本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.
3、∠AFE=50°.
【分析】
根据CE平分∠ACB,∠ACB=80°,得出∠ECB=,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.
【详解】
解:∵CE平分∠ACB,∠ACB=80°,
∴∠ECB=,
∵AD是△ABC边BC上的高,AD⊥BC,
∴∠ADC=90°,
∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,
∴∠AFE=∠DFC=50°.
【点睛】
本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.
4、
(1)见解析
(2)
【分析】
(1)利用是的外角,以及证明即可.
(2)证明≌,可知,从而得出答案.
(1)
证明:∵是的外角,
∴.
又∵,∴.
(2)
解:在和中,
,
∴≌.
∴.
∵,
∴.
【点睛】
本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.
5、(1)见解析;(2)见解析;(3)108°
【分析】
(1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;
(2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;
(3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.
【详解】
证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC
∴∠AEG=∠C
∴AB//CD
(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°
∴∠DGC+∠AHF=180°
∴EC//BF
∴∠B=∠AEG
由(1)得∠AEG=∠C
∴∠B=∠C
(3)由(2)得EC//BF
∴∠BFC+∠C=180°
∵∠BFC=4∠C
∴∠C=36°
∴∠DGC=36°
∵∠C+∠DGC+∠D=180°
∴∠D=108°
【点睛】
此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.
6、见解析
【分析】
过A作AF⊥BC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案.
【详解】
证明:如图,过A作AF⊥BC于F,
∵AB=AC,AD=AE,
∴BF=CF,DF=EF,
∴BF-DF=CF-EF,
∴BD=CE.
【点睛】
本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.
7、(1)见解析;(2)猜想:,见解析;(3)见解析
【分析】
(1)先证明和,再根据证明即可;
(2)根据AAS证明得,,进一步可得出结论;
(3)分别过点C、E作,,同(1)可证,,得出CM=EN,证明得,从而可得结论.
【详解】
解:(1)证明:∵,,
∴,
∴
∵,
∴
∴,
在与中
,
∴
(2)猜想:,
∵
∴,
∴,
在与中
∴,
∴,,
∴
(3)分别过点C、E作,,
同(1)可证,,
∴,
∴,
∵,,
∴
在与中
∴,
∴,
∴G为CE的中点.
【点睛】
本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得△ABD≌△CAE是解决问题的关键.
8、
(1)△AMN是是等腰三角形;理由见解析;
(2)①证明见解析;②a﹣b.
【分析】
(1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;
(2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;
②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.
(1)
解:△AMN是是等腰三角形,
理由如下:
∵AB=AC,
∴∠ABC=∠ACB,
∵MN∥BC,
∴∠AMN=∠ABC,∠ANM=∠ACB,
∴∠AMN=∠ANM,
∴AM=AN,
∴△AMN是等腰三角形;
(2)
①证明:∵BP平分∠ABC,
∴∠PBM=∠PBC,
∵MN∥BC,
∴∠MPB=∠PBC
∴∠PBM=∠MPB,
∴MB=MP,
∴△BPM是等腰三角形;
②由①知MB=MP,
同理可得:NC=NP,
∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,
∵△ABC的周长为a,BC=b,
∴AB+AC+b=a,
∴AB+AC=a﹣b
∴△AMN的周长=a﹣b.
【点睛】
本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.
9、
(1)3
(2)12
(3)
【分析】
(1)利用ASA证明△AEF≌△ABE,得AE=AB=4,得出答案;
(2)延长CG、AB交于点H,设S△BGC=S△HGB=a,用两种方法表示△ACH的面积即可;
(3)在AC上取AN=AB,可得CD=DN=n-m,根据△ABD和△ACD的高相等,面积比等于底之比可求出CD的长.
(1)
∵AD是△ABC的平分线,
∴∠BAD=∠CAD,
∵BE⊥AD,
∴∠BEA=∠FEA,
在△AEF和△AEB中,
,
∴△AEF≌△AEB(ASA),
∴AF=AB=4,
∵AC=7
∴CF=AC-AF=7-4=3,
故答案为:3;
(2)
延长CG、AB交于点H,如图,
由(1)知AC=AH,点G为CH的中点,
设S△BGC=S△HGB=a,
根据△ACH的面积可得:
S△ABC+2a=2(6+a),
∴S△ABC=12;
(3)
在AC上取AN=AB,如图,
∵AD是△ABC的平分线,
∴∠NAD=∠BAD,
在△ADN与△ADB中,
,
∴△ADN≌△ADB(SAS),
∴∠AND=∠B,DN=BD,
∵∠B=2∠C,
∴∠AND=2∠C,
∴∠C=∠CDN,
∴CN=DN=AC-AB=n-m,
∴BD=DN=n-m,
根据△ABD和△ACD的高相等,面积比等于底之比可得:
,
∴,
∴,
故答案为:.
【点睛】
本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键.
10、(1);(2)①与是偏等积三角形,理由见详解;②修建小路的总造价为元
【分析】
(1)当时,则,证,再证与不全等,即可得出结论;
(2)①过作于,过作于,证,得,则,再证与不全等,即可得出结论;②过点作,交的延长线于,证得,得到,再证,得,由余角的性质可证,然后由三角形面积和偏等积三角形的定义得,,求出,即可求解.
【详解】
解:(1)当时,与是偏等积三角形,理由如下:
设点到的距离为,则,,
,
,,
,
、,
与不全等,
与是偏等积三角形,
故答案为:;
(3)①与是偏等积三角形,理由如下:
过作于,过作于,如图3所示:
则,
、是等腰直角三角形,
,,,
,
,
,
在和中,
,
,
,
,,
,
,,
,
,,
与不全等,
与是偏等积三角形;
②如图4,过点作,交的延长线于,
则,
点为的中点,
,
在和中,
,
,
,
,
,
,
,
,
,
,
在和中,
,
,
,
,
,
,
.
由①得:与是偏等积三角形,
,,
,
修建小路的总造价为:(元.
【点睛】
本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明和是解题的关键,属于中考常考题型.
初中沪教版 (五四制)第十四章 三角形综合与测试精练: 这是一份初中沪教版 (五四制)第十四章 三角形综合与测试精练,共32页。试卷主要包含了如图,在中,AD,有下列说法等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题: 这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题,共36页。试卷主要包含了如图,在中,AD,如图,点D等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题: 这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共37页。