还剩28页未读,
继续阅读
数学沪教版 (五四制)第十四章 三角形综合与测试综合训练题
展开这是一份数学沪教版 (五四制)第十四章 三角形综合与测试综合训练题,共31页。试卷主要包含了如图,在中,AD,尺规作图等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,AC=BC,∠C=α,DE⊥AC于E,FD⊥AB于D,则∠EDF等于( ).
A.αB.90°-αC.90°-αD.180°-2α
2、下列三角形与下图全等的三角形是( )
A.B.C.D.
3、根据下列已知条件,不能画出唯一的是( )
A.,,B.,,
C.,,D.,,
4、如图,已知,要使,添加的条件不正确的是( )
A.B.C.D.
5、若等腰三角形的一个外角是70°,则它的底角的度数是( )
A.110°B.70°C.35°D.55°
6、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为( )
A.8B.10C.20D.40
7、如图,在和中,,,,,连接,交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为( )
A.1个B.2个C.3个D.4个
8、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
A.1个B.2个C.3个D.4个
9、尺规作图:作角等于已知角.示意图如图所示,则说明的依据是( )
A.SSSB.SASC.ASAD.AAS
10、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,AD⊥BC,∠1=∠B,∠C=65°,∠BAC=__________
2、在平面直角坐标系中,,,,,则点的坐标为__________.
3、如图,AB=CD,若要判定△ABD≌△CDB,则需要添加的一个条件是 ____________.
4、如图,为△ABC的中线,为△的中线,为△的中线,……按此规律,为△的中线.若△ABC的面积为8,则△的面积为_______________.
5、如图,在中,,点D,E在边BC上,,若,,则CE的长为______.
三、解答题(10小题,每小题5分,共计50分)
1、如图,AD是的高,CE是的角平分线.若,,求的度数.
2、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.
3、如图,点在上,点在上,,∠=∠.求证:.
4、如图,为等边三角形,D是BC中点,,CE是的外角的平分线.
求证:.
5、已知AMCN,点B在直线AM、CN之间,AB⊥BC于点B.
(1)如图1,请直接写出∠A和∠C之间的数量关系: .
(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.
(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .
6、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.
7、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.
(1)求∠F的度数;
(2)若∠ABE=75°,求证:BE∥CF.
8、已知:在△ABC中,AD平分∠BAC,AE=AC.求证:AD∥CE.
9、阅读以下材料,并按要求完成相应的任务:
任务:
如图3,在四边形中,,,,以为顶点的,、与、边分别交于、两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.
10、已知:如图,,,求证:
-参考答案-
一、单选题
1、B
【分析】
AC=BC,∠C=α,DE⊥AC于E,FD⊥AB于D,有,,,即可求得角度.
【详解】
解:由题意知:,
故选B.
【点睛】
本题考查了等腰三角形的性质,几何图形中角度的计算.解题的关键在于确定各角度之间的数量关系.
2、C
【分析】
根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.
【详解】
由题可知,第三个内角的度数为,
A.只有两边,故不能判断三角形全等,故此选项错误;
B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;
C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;
D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.
故选:C.
【点睛】
本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.
3、B
【分析】
根据三角形存在的条件去判断.
【详解】
∵,,,满足ASA的要求,
∴可以画出唯一的三角形,A不符合题意;
∵,,,∠A不是AB,BC的夹角,
∴可以画出多个三角形,B符合题意;
∵,,,满足SAS的要求,
∴可以画出唯一的三角形,C不符合题意;
∵,,,AB最大,
∴可以画出唯一的三角形,D不符合题意;
故选B.
【点睛】
本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.
4、D
【分析】
已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.
【详解】
解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;
B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;
C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;
D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;
故选:D.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键.
5、C
【分析】
先求出与这个外角相邻的内角的度数为,再根据三角形的内角和定理即可得.
【详解】
解:等腰三角形的一个外角是,
与这个外角相邻的内角的度数为,
这个等腰三角形的顶角的度数为,底角的度数为,
故选:C.
【点睛】
本题考查了等腰三角形、三角形的内角和定理等知识点,判断出等腰三角形的顶角的度数为是解题关键.
6、C
【分析】
根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.
【详解】
解:∵AD是边BC上的中线,CD的长为5,
∴CB=2CD=10,
的面积为,
故选:C.
【点睛】
本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.
7、C
【分析】
由全等三角形的判定及性质对每个结论推理论证即可.
【详解】
∵
∴
∴
又∵,
∴
∴
故①正确
∵
∴
由三角形外角的性质有
则
故②正确
作于,于,如图所示:
则°,
在和中,,
∴,
∴,
在和中,
∴,
∴
∴平分
故④正确
假设平分
则
∵
∴
即
由④知
又∵为对顶角
∴
∴
∴
∴在和中,
∴
即AB=AC
又∵
故假设不符,故不平分
故③错误.
综上所述①②④正确,共有3个正确.
故选:C.
【点睛】
本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.
8、C
【分析】
根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
【详解】
解:c的范围是:5﹣3<c<5+3,即2<c<8.
∵c是奇数,
∴c=3或5或7,有3个值.
则对应的三角形有3个.
故选:C.
【点睛】
本题主要考查了三角形三边关系,准确分析判断是解题的关键.
9、A
【分析】
利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.
【详解】
解:由作法可得OD=OC=OD′=OC′,CD=C′D′,
所以根据“SSS”可判断△OCD≌△O′C′D′,
所以∠A′OB′=∠AOB.
故选:A.
【点睛】
本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.
10、C
【分析】
根据题意,可知仍可辨认的有1条边和2个角,且边为两角的夹边,即可根据来画一个完全一样的三角形
【详解】
根据题意可得,已知一边和两个角仍保留,且边为两角的夹边,
根据两个三角形对应的两角及其夹边相等,两个三角形全等,即
故选C
【点睛】
本题考查了三角形全等的性质与判定,掌握三角形的判定方法是解题的关键.
二、填空题
1、70°
【分析】
先根据AD⊥BC可知∠ADB=∠ADC=90°,再根据直角三角形的性质求出∠1与∠DAC的度数,由∠BAC=∠1+∠DAC即可得出结论.
【详解】
∵AD⊥BC,
∴∠ADB=∠ADC=90°,
∴∠DAC=90°﹣65°=25°,∠1=∠B=45°,
∴∠BAC=∠1+∠DAC=45°+25°=70°.
【点睛】
本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
2、
【分析】
按照在x轴的上下方,分成两类情况讨论,如解析中的图像所示,分别利用边和角证明和成立,然后根据对应边相等,即可求出两种情况对应的点B的坐标.
【详解】
解:如下图所示:
由,可知:,.
当B点在x轴下方时,过点B1向x轴作垂线,垂足为E.
,
在与中:
,
点坐标为
当B点在x轴上方时,过点B2向x轴作垂线,垂足为D.
由题意可知:
在与中
,
点坐标为
故答案为:或.
【点睛】
本题主要是考查了全等三角形的判定和性质以及坐标点的求解,熟练利用全等三角形证明边相等,进而利用边长求解点的坐标,这是解决该题的关键.
3、∠1=∠2(或填AD=CB)
【分析】
根据题意知,在△ABD与△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.
【详解】
解:∵在△ABD与△CDB中,AB=CD,BD=DB,
∴添加∠1=∠2时,可以根据SAS判定△ABD≌△CDB,
添加AD=CB时,可以根据SSS判定△ABD≌△CDB,,
故答案为∠1=∠2(或填AD=CB).
【点睛】
本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
4、
【分析】
根据三角形的中线性质,可得△的面积=,△的面积=,……,进而即可得到答案.
【详解】
由题意得:△的面积=,△的面积=,……,△的面积==.
故答案是:.
【点睛】
本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键.
5、5
【分析】
由题意易得,然后可证,则有,进而问题可求解.
【详解】
解:∵,
∴,
∵,
∴(ASA),
∴,
∵,,
∴,
∴;
故答案为5.
【点睛】
本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.
三、解答题
1、
【分析】
AD是的高,有;由知;CE是的角平分线可得;,;在中,.
【详解】
解:∵AD是的高
∴
∵
∴
∵CE是的角平分线
∴
∵
∴
∴在中,.
【点睛】
本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
2、见解析
【分析】
过A作AF⊥BC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案.
【详解】
证明:如图,过A作AF⊥BC于F,
∵AB=AC,AD=AE,
∴BF=CF,DF=EF,
∴BF-DF=CF-EF,
∴BD=CE.
【点睛】
本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.
3、见解析
【分析】
根据已知条件和公共角,直接根据角边角证明,进而即可证明
【详解】
在与中,
∴.
∴.
【点睛】
本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.
4、证明见解析.
【分析】
过D作DG∥AC交AB于G,由等边三角形的性质和平行线的性质得到∠BDG=∠BGD=60°,于是得到△BDG是等边三角形,再证明△AGD≌△DCE即可得到结论.
【详解】
证明:过D作DG∥AC交AB于G,
∵△ABC是等边三角形,
∴AB=AC,∠B=∠ACB=∠BAC=60°,
又∵DG∥AC,
∴∠BDG=∠BGD=60°,
∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,
∴DG=BD,
∵点D为BC的中点,
∴BD=CD,
∴DG=CD,
∵EC是△ABC外角的平分线,
∴∠ACE=(180°−∠ACB)=60°,
∴∠BCE=∠ACB+∠ACE=120°=∠AGD,
∵AB=AC,点D为BC的中点,
∴∠ADB=∠ADC=90°,
又∵∠BDG=60°,∠ADE=60°,
∴∠ADG=∠EDC=30°,
在△AGD和△ECD中,
,
∴△AGD≌△ECD(ASA).
∴AD=DE.
【点睛】
本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
5、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°
【分析】
(1)过点B作BE∥AM,利用平行线的性质即可求得结论;
(2)过点B作BE∥AM,利用平行线的性质即可求得结论;
(3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.
【详解】
(1)过点B作BE∥AM,如图,
∵BE∥AM,
∴∠A=∠ABE,
∵BE∥AM,AM∥CN,
∴BE∥CN,
∴∠C=∠CBE,
∵AB⊥BC,
∴∠ABC=90°,
∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.
故答案为:∠A+∠C=90°;
(2)∠A和∠C满足:∠C﹣∠A=90°.理由:
过点B作BE∥AM,如图,
∵BE∥AM,
∴∠A=∠ABE,
∵BE∥AM,AM∥CN,
∴BE∥CN,
∴∠C+∠CBE=180°,
∴∠CBE=180°﹣∠C,
∵AB⊥BC,
∴∠ABC=90°,
∴∠ABE+∠CBE=90°,
∴∠A+180°﹣∠C=90°,
∴∠C﹣∠A=90°;
(3)设CH与AB交于点F,如图,
∵AE平分∠MAB,
∴∠GAF=∠MAB,
∵CH平分∠NCB,
∴∠BCF=∠BCN,
∵∠B=90°,
∴∠BFC=90°﹣∠BCF,
∵∠AFG=∠BFC,
∴∠AFG=90°﹣∠BCF.
∵∠AGH=∠GAF+∠AFG,
∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).
由(2)知:∠BCN﹣∠MAB=90°,
∴∠AGH=90°﹣45°=45°.
故答案为:45°.
【点睛】
本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.
6、25°
【分析】
直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
【详解】
∵AB=AC,∠A=50°,
∴∠ABC=∠ACB=65°,
∵CD⊥BC于点D,
∴∠BCD的度数为:180°−90°−65°=25°.
【点睛】
此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
7、(1);(2)证明见详解.
.
【分析】
(1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;
(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.
【详解】
解:(1)∵,,,
∴,,
∵,
∴,,
∴,
∴,
∵,
∴,,
∴;
(2)∵,,
∴,
由(1)可得,
∴,
∴(内错角相等,两直线平行).
【点睛】
题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.
8、见解析.
【分析】
先根据角平分线的定义得到∠BAD=∠BAC,再根据等腰三角形的性质和三角形外角定理得到∠E=∠BAC,从而得到∠BAD=∠E,即可证明AD∥CE.
【详解】
解:∵AD平分∠BAC,
∴∠BAD=∠BAC,
∵AE=AC,
∴∠E=∠ACE,
∵∠E+∠ACE=∠BAC,
∴∠E=∠BAC,
∴∠BAD=∠E,
∴AD∥CE.
【点睛】
本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.
9、成立,证明见解析
【分析】
根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF .
【详解】
解:成立.
证明:将绕点顺时针旋转,得到,
,,,,,
,、、三点共线,
.
,,,
,
.
【点睛】
本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.
10、证明见解析
【分析】
由,,结合公共边 从而可得结论.
【详解】
证明:在与中,
【点睛】
本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.
从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:
如下图1,在正方形中,以为顶点的,、与、边分别交于、两点.易证得.
大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、、三点共线,,进而可证明,故.
相关试卷
数学七年级下册第十四章 三角形综合与测试习题:
这是一份数学七年级下册第十四章 三角形综合与测试习题,共32页。试卷主要包含了如图,点D等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题:
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共34页。试卷主要包含了定理等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题:
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共37页。