终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形同步测试试题(含详解)

    立即下载
    加入资料篮
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形同步测试试题(含详解)第1页
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形同步测试试题(含详解)第2页
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形同步测试试题(含详解)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第十四章 三角形综合与测试复习练习题

    展开

    这是一份数学七年级下册第十四章 三角形综合与测试复习练习题,共31页。试卷主要包含了有下列说法等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形同步测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、等腰三角形的一个角是80°,则它的一个底角的度数是( )
    A.50° B.80° C.50°或80° D.100°或80°
    2、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )
    A.1,2,3 B.3,4,7
    C.2,3,4 D.4,5,10
    3、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
    A.SSS B.SAS C.ASA D.AAS
    4、有下列说法:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②等腰三角形一腰上的高与底边的夹角与顶角互余;③等腰三角形顶角的平分线是它的对称轴;④等腰三角形两腰上的中线相等.其中正确的说法有( )个.
    A.1 B.2 C.3 D.4
    5、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )

    A.两点确定一条直线
    B.两点之间,线段最短
    C.三角形具有稳定性
    D.三角形的任意两边之和大于第三边
    6、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
    A.3cm B.6cm C.10cm D.12cm
    7、下列长度的三条线段能组成三角形的是( )
    A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,7
    8、有两边相等的三角形的两边长为,,则它的周长为( )
    A. B. C. D.或
    9、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )

    A.180° B.210° C.360° D.270°
    10、如图,等腰中,,,于D,点O是线段AD上一点,点P是BA延长线上一点,若,则下列结论:①;②;③是等边三角形;④.其中正确的是( )

    A.①③④ B.①②③ C.②③④ D.①②③④
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,点,在直线上,且,且,过,,分别作,,,若,,,则的面积是______.

    2、如图,BD,CE是等边三角形ABC的中线,BD,CE交于点F,则______°.

    3、如图,已知△ABC是等边三角形,边长为3,G是三角形的重心,那么GA =______.

    4、若一条长为24cm的细线能围成一边长等于9cm的等腰三角形,则该等腰三角形的腰长为_____cm.
    5、如图,在ABC中,AB=AC,∠A=36°,点D在AC上,且BD=BC,则∠BDC=_______.

    三、解答题(10小题,每小题5分,共计50分)
    1、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
    (1)如图1,点D在线段BC上.
    ①根据题意补全图1;
    ②∠AEF = (用含有的代数式表示),∠AMF= °;
    ③用等式表示线段MA,ME,MF之间的数量关系,并证明.
    (2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.

    2、如图所示,四边形的对角线、相交于点,已知,.求证:

    (1);
    (2).
    3、阅读下面材料:活动1利用折纸作角平分线
    ①画图:在透明纸片上画出(如图1-①);②折纸:让的两边QP与QR重合,得到折痕QH(如图1-②);③获得结论:展开纸片,QH就是的平分线(如图1-③).

    活动2利用折纸求角
    如图2,纸片上的长方形ABCD,直线EF与边AB,CD分别相交于点E,F.将对折,点A落在直线EF上的点处,折痕EN与AD的交点为N;将对折,点B落在直线EF上的点处,折痕EM与BC的交点为M.这时的度数可知,而且图中存在互余或者互补的角.
    解答问题:(1)求的度数;
    (2)①图2中,用数字所表示的角,哪些与互为余角?
    ②写出的一个补角.
    解:(1)利用活动1可知,EN是的平分线,EM是的平分线,所以 , .由题意可知,是平角.所以(∠ +∠ )= °.
    (2)①图2中,用数字所表示的角,所有与互余的角是: ;
    ②的一个补角是 .

    4、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.

    (1)求的度数;
    (2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.
    5、如图,在中,AD是BC边上的高,CE平分,若,,求的度数.

    6、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.

    7、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.
    (1)求∠F的度数;
    (2)若∠ABE=75°,求证:BE∥CF.

    8、如图,为等边三角形,D是BC中点,,CE是的外角的平分线.
    求证:.

    9、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.

    10、如图,和是顶角相等的等腰三角形,BC,DE分别是这两个等腰三角形的底边.求证.


    -参考答案-
    一、单选题
    1、C
    【分析】
    已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可.
    【详解】
    解:等腰三角形的一个角是80°,
    当80º为底角时,它的一个底角是80º,
    当80º为顶角时,它的一个底角是,
    则它的一个底角是50º或80º.
    故选:C.
    【点睛】
    本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键.
    2、C
    【分析】
    三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.
    【详解】
    解:A、1+2=3,不能组成三角形,不符合题意;
    B、3+4=7,不能组成三角形,不符合题意;
    C、2+3>4,能组成三角形,符合题意;
    D、4+5<10,不能组成三角形,不符合题意;
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.
    3、A
    【分析】
    根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
    【详解】
    解:三根木条即为三角形的三边长,
    即为利用确定三角形,
    故选:A.
    【点睛】
    题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
    4、B
    【分析】
    根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可.
    【详解】
    解:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;
    ②等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;
    ③等腰三角形的顶角平分线在它的对称轴上,原说法错误;
    ④等腰三角形两腰上的中线相等,说法正确.
    综上,正确的有①④,共2个,
    故选:B.
    【点睛】
    本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键.
    5、C
    【分析】
    根据三角形具有稳定性进行求解即可.
    【详解】
    解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,
    故选C.
    【点睛】
    本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
    6、C
    【分析】
    设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
    【详解】
    解:设第三根木棒的长度为cm,则


    所以A,B,D不符合题意,C符合题意,
    故选C
    【点睛】
    本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
    7、C
    【分析】
    根据组成三角形的三边关系依次判断即可.
    【详解】
    A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.
    B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.
    C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.
    D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
    8、D
    【分析】
    有两边相等的三角形,是等腰三角形,两边分别为和,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.
    【详解】
    解:当4为底时,其它两边都为5,
    4、5、5可以构成三角形,周长为;
    当4为腰时,其它两边为4和5,
    4、4、5可以构成三角形,周长为.
    综上所述,该等腰三角形的周长是或.
    故选:D.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.
    9、B
    【分析】
    已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;
    【详解】
    解:如图所示,

    ∵,
    ∴,
    ∵,,
    ∴,
    ∵,,
    ∴,
    ∵,,
    ∴;
    故选D.
    【点睛】
    本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.
    10、A
    【分析】
    ①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.
    【详解】
    解:①如图1,连接OB,

    ∵AB=AC,AD⊥BC,
    ∴BD=CD,∠BAD=∠BAC=×120°=60°,
    ∴OB=OC,∠ABC=90°﹣∠BAD=30°
    ∵OP=OC,
    ∴OB=OC=OP,
    ∴∠APO=∠ABO,∠DCO=∠DBO,
    ∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;
    ②由①知:∠APO=∠ABO,∠DCO=∠DBO,
    ∵点O是线段AD上一点,
    ∴∠ABO与∠DBO不一定相等,
    则∠APO与∠DCO不一定相等,故②不正确;
    ③∵∠APC+∠DCP+∠PBC=180°,
    ∴∠APC+∠DCP=150°,
    ∵∠APO+∠DCO=30°,
    ∴∠OPC+∠OCP=120°,
    ∴∠POC=180°﹣(∠OPC+∠OCP)=60°,
    ∵OP=OC,
    ∴△OPC是等边三角形,故③正确;
    ④如图2,在AC上截取AE=PA,

    ∵∠PAE=180°﹣∠BAC=60°,
    ∴△APE是等边三角形,
    ∴∠PEA=∠APE=60°,PE=PA,
    ∴∠APO+∠OPE=60°,
    ∵∠OPE+∠CPE=∠CPO=60°,
    ∴∠APO=∠CPE,
    ∵OP=CP,
    在△OPA和△CPE中,

    ∴△OPA≌△CPE(SAS),
    ∴AO=CE,
    ∴AC=AE+CE=AO+AP,
    ∴AB=AO+AP,故④正确;
    正确的结论有:①③④,
    故选:A.
    【点睛】
    本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.
    二、填空题
    1、15
    【分析】
    根据AAS证明△EFA≌△AGB,△BGC≌△CHD,再根据全等三角形的性质以及三角形的面积公式求解即可.
    【详解】
    解:(1)∵EF⊥FG,BG⊥FG,
    ∴∠EFA=∠AGB=90°,
    ∴∠AEF+∠EAF=90°,
    又∵AE⊥AB,即∠EAB=90°,
    ∴∠BAG+∠EAF=90°,
    ∴∠AEF=∠BAG,
    在△AEC和△CDB中,

    ∴△EFA≌△AGB(AAS);
    同理可证△BGC≌△CHD(AAS),
    ∴AG=EF=6,CG=DH=4,
    ∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.
    故答案为:15.
    【点睛】
    本题考查了三角形全等的性质和判定,解题的关键是灵活运用所学知识解决问题.
    2、120
    【分析】
    等边三角形中线与角平分线合一,有,,由可求得结果.
    【详解】
    解:∵是等边三角形

    ∵BD,CE是等边三角形ABC的中线

    又∵

    故答案为:.
    【点睛】
    本题考查了等边三角形的性质,角度的计算.解题的关键在于熟练利用等边三角形三线合一的性质.
    3、
    【分析】
    延长AG交BC于D,根据重心的概念得到AD⊥BC,BD=DC=BC=,根据勾股定理求出AD,根据重心的概念计算即可.
    【详解】
    解:延长AG交BC于D,
    ∵G是三角形的重心,
    ∴AD⊥BC,BD=DC=BC=,
    由勾股定理得,AD=,
    ∴GA=AD=,

    故答案为:.
    【点睛】
    本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
    4、9或7.5或9
    【分析】
    分9是底边和腰长两种情况,分别列出方程,求解即可得到结果.
    【详解】
    解:若9cm为底时,腰长应该是(24-9)=7.5cm,
    故三角形的三边分别为7.5cm、7.5cm、9cm,
    ∵7.5+7.5=15>9,
    故能围成等腰三角形;
    若9cm为腰时,底边长应该是24-9×2=6,
    故三角形的三边为9cm、9cm、6cm,
    ∵6+9=15>9,
    ∴以9cm、9cm、6cm为三边能围成三角形,
    综上所述,腰长是9cm或7.5cm,
    故答案为:9或7.5.
    【点睛】
    本题考查了等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键.
    5、72°72度
    【分析】
    根据AB=AC求出∠ACB,利用BD=BC,求出∠BDC的度数.
    【详解】
    解:∵AB=AC,∠A=36°,
    ∴,
    ∵BD=BC,
    ∴∠BDC=∠ACB=72°,
    故答案为:72°.
    【点睛】
    此题考查了等腰三角形的性质:等边对等角,熟记性质是解题的关键.
    三、解答题
    1、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
    【分析】
    (1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
    (2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
    【详解】
    解:(1)①补全图形如下图:

    ②∵∠CAE=∠DAC=,
    ∴∠BAE=30°+
    ∴∠FAE=2×(30°+)
    ∴∠AEF==60°-;
    ∵∠AMF=∠CAE+∠AEF=+60°-=60°,
    故答案是:60°-,60°;
    ③MF=MA+ME.
    证明:在FE上截取GF=ME,连接AG .

    ∵点D关于直线AC的对称点为E,
    ∴△ADC ≌△AEC.
    ∴∠CAE =∠CAD =.
    ∵∠BAC=30°,
    ∴∠EAN=30°+.
    又∵点E关于直线AB的对称点为F,
    ∴AB垂直平分EF.
    ∴AF=AE,∠FAN=∠EAN =30°+,
    ∴∠F=∠AEF=.
    ∴∠AMG =.
    ∵AF=AE,∠F=∠AEF, GF=ME,
    ∴△AFG ≌△AEM.
    ∴AG =AM.
    又∵∠AMG=,
    ∴△AGM为等边三角形.
    ∴MA=MG.
    ∴MF=MG+GF=MA+ME.
    (2),理由如下:
    如图1所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    又∵∠NAM=30°,
    ∴AM=2MN,
    ∴AM=2NE+2EM =MF+ME,
    ∴MF=AM-ME;

    如图2所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    ∵∠NAM=30°,
    ∴AM=2NM,
    ∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
    ∴MF=MA-ME;

    综上所述:MF=MA-ME.
    【点睛】
    本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.
    2、
    (1)证明见解析;
    (2)证明见解析.
    【分析】
    (1)根据全等三角形的判定定理可直接证明;
    (2)根据(1)中结论可得,再由等角对等边得出,运用等式的性质进行计算即可证明.
    (1)
    解:在与中,

    ∴;
    (2)
    由(1)可得:,
    ∴,
    ∵,
    ∴,
    ∴,
    即.
    【点睛】
    题目主要考查全等三角形的判定和性质,等角对等边的性质,理解题意,综合运用这些知识点是解题关键.
    3、(1),,,90;(2)①∠1、∠2;②∠CME或∠NEB.
    【分析】

    【详解】
    解:(1)∵折叠
    ∴EN是的平分线,EM是的平分线,
    ∴∠NEA=∠NEA′=,∠BEM=∠B′EM=,
    ∵是平角.
    ∴∠NEM=∠NEA′+∠B′EM==+,
    故答案为:,,,90;

    (2)①∵∠1=∠2,∠A′EN=∠3,∠NEM=90°,
    ∴∠A′EN+∠1=∠NEM=90°,
    ∴互为余角为∠1和∠2,
    故答案为:∠1、∠2;
    ②∵∠A′EN=∠3,∠3+∠NEB=180°,
    ∴∠A′EN的补角为∠NEB.
    ∵∠B=90°,
    ∴∠2+∠EMB=90°,
    ∴∠3=∠EMB,
    ∵∠CME+∠EMB=180°,
    ∴∠3+∠CME=180°,
    ∴∠A′EN的补角为∠CME,
    ∴∠A′EN的补角为∠CME或∠NEB.
    故答案为∠CME或∠NEB.
    【点睛】
    本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键.
    4、(1)70°;(2)15km/h
    【分析】
    (1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;
    (2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.
    【详解】
    解:(1)根据题意得∠BAC=70°,∠ABC=40°,
    ∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;
    (2)∵∠BAC=∠ACB=70°,
    ∴BC=AB=75km,
    ∴轮船的速度为75÷5=15(km/h).
    【点睛】
    本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.
    5、85°
    【分析】
    由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,
    【详解】
    解:∵AD是BC边上的高,
    ∴∠ADB=∠ADC=90.
    在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.
    ∵CE平分∠ACB,
    ∴∠ECB=∠ACB=35°.
    ∵∠AEC是△BEC的外角,,
    ∴∠AEC=∠B+∠ECB=50°+35°=85°.
    答:∠AEC的度数是85°.
    【点睛】
    本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.
    6、∠AFE=50°.
    【分析】
    根据CE平分∠ACB,∠ACB=80°,得出∠ECB=,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.
    【详解】
    解:∵CE平分∠ACB,∠ACB=80°,
    ∴∠ECB=,
    ∵AD是△ABC边BC上的高,AD⊥BC,
    ∴∠ADC=90°,
    ∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,
    ∴∠AFE=∠DFC=50°.
    【点睛】
    本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.
    7、(1);(2)证明见详解.

    【分析】
    (1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;
    (2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.
    【详解】
    解:(1)∵,,,
    ∴,,
    ∵,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,,
    ∴;
    (2)∵,,
    ∴,
    由(1)可得,
    ∴,
    ∴(内错角相等,两直线平行).
    【点睛】
    题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.
    8、证明见解析.
    【分析】
    过D作DG∥AC交AB于G,由等边三角形的性质和平行线的性质得到∠BDG=∠BGD=60°,于是得到△BDG是等边三角形,再证明△AGD≌△DCE即可得到结论.
    【详解】
    证明:过D作DG∥AC交AB于G,

    ∵△ABC是等边三角形,
    ∴AB=AC,∠B=∠ACB=∠BAC=60°,
    又∵DG∥AC,
    ∴∠BDG=∠BGD=60°,
    ∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,
    ∴DG=BD,
    ∵点D为BC的中点,
    ∴BD=CD,
    ∴DG=CD,
    ∵EC是△ABC外角的平分线,
    ∴∠ACE=(180°−∠ACB)=60°,
    ∴∠BCE=∠ACB+∠ACE=120°=∠AGD,
    ∵AB=AC,点D为BC的中点,
    ∴∠ADB=∠ADC=90°,
    又∵∠BDG=60°,∠ADE=60°,
    ∴∠ADG=∠EDC=30°,
    在△AGD和△ECD中,

    ∴△AGD≌△ECD(ASA).
    ∴AD=DE.
    【点睛】
    本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
    9、见解析
    【分析】
    先由BF=CE说明BC= EF.然后运用SAS证明△ABC≌△DEF,最后运用全等三角形的性质即可证明.
    【详解】
    证明:∵BF= CE,
    ∴BC= EF.
    在△ABC和△DEF中,

    ∴△ABC≌△DEF(SAS).
    ∴AC=DF.
    【点睛】
    本题主要考查了全等三角形的判定与性质,正确证明△ABC≌△DEF是解答本题的关键.
    10、见解析
    【分析】
    由和是顶角相等的等腰三角形,得出知、、,证即可得证.
    【详解】
    解:和是顶角相等的等腰三角形,得出,
    ,,,
    在和中,



    【点睛】
    本题主要考查全等三角形的判定与性质,解题的关键是熟练掌握等腰三角形的性质与全等三角形的判定和性质.

    相关试卷

    沪教版 (五四制)第十四章 三角形综合与测试课时训练:

    这是一份沪教版 (五四制)第十四章 三角形综合与测试课时训练,共35页。试卷主要包含了三角形的外角和是,有下列说法等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后复习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后复习题,共32页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。

    沪教版 (五四制)第十四章 三角形综合与测试课后测评:

    这是一份沪教版 (五四制)第十四章 三角形综合与测试课后测评,共34页。试卷主要包含了定理等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map