搜索
    上传资料 赚现金
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形综合训练练习题(含详解)
    立即下载
    加入资料篮
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形综合训练练习题(含详解)01
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形综合训练练习题(含详解)02
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形综合训练练习题(含详解)03
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后复习题

    展开
    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后复习题,共32页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。

    沪教版七年级数学第二学期第十四章三角形综合训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为(  )

    A.21 B.24 C.27 D.30
    2、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( ).
    A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
    3、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为(  )

    A.15° B.20° C.25° D.30°
    4、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
    A. B. C. D.
    5、下列命题是真命题的是( )
    A.等腰三角形的角平分线、中线、高线互相重合
    B.一个三角形被截成两个三角形,每个三角形的内角和是90度
    C.有两个角是60°的三角形是等边三角形
    D.在ABC中,,则ABC为直角三角形
    6、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )

    A.30° B.40° C.50° D.60°
    7、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
    A.3cm B.6cm C.10cm D.12cm
    8、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC=5,则五边形DECHF的周长为(  )

    A.8 B.10 C.11 D.12
    9、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )

    A.两点确定一条直线
    B.两点之间,线段最短
    C.三角形具有稳定性
    D.三角形的任意两边之和大于第三边
    10、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )

    A.50° B.70° C.110° D.120°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在中,,点D,E在边BC上,,若,,则CE的长为______.

    2、如图,点F,A,D,C在同一条直线上,,,,则AC等于_____.

    3、如图,已知AB=3,AC=CD=1,∠D=∠BAC=90°,则△ACE的面积是 _____.

    4、如图,AD⊥BC,∠1=∠B,∠C=65°,∠BAC=__________

    5、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于 _______

    三、解答题(10小题,每小题5分,共计50分)
    1、已知:如图,∠ABC=∠DCB,∠1=∠2.求证AB=DC.

    2、如图,E为AB上一点,BD∥AC,AB=BD,AC=BE.求证:BC=DE.

    3、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.

    4、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.
    (1)求证:AB//CD;
    (2)若∠AGE+∠AHF=180°,求证:∠B=∠C;
    (3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.

    5、如图,四边形中,,,于点.

    (1)如图1,求证:;
    (2)如图2,延长交的延长线于点,点在上,连接,且,求证:;
    (3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长.
    6、数学课上,王老师布置如下任务:
    如图,已知∠MAN<45°,点B是射线AM上的一个定点,在射线AN上求作点C,使∠ACB=2∠A.
    下面是小路设计的尺规作图过程.
    作法:①作线段AB的垂直平分线l,直线l交射线AN于点D;
    ②以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求.

    根据小路设计的尺规作图过程,
    (1)使用直尺和圆规,补全图形;(保留作图痕迹)
    (2)完成下面的证明:
    证明:连接BD,BC,
    ∵直线l为线段AB的垂直平分线,
    ∴DA= ,( )(填推理的依据)
    ∴∠A=∠ABD,
    ∴∠BDC=∠A+∠ABD=2∠A.
    ∵BC=BD,
    ∴∠ACB=∠ ,( )(填推理的依据)
    ∴∠ACB=2∠A.
    7、如图,在中,点D、E分别在边AB、AC上,BE与CD交于点F,,,.求和的度数.

    8、如图,在中,是角平分线,,.

    (1)求的度数;
    (2)若,求的度数.
    9、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.

    (1)若,求的度数;
    (2)若,求的大小;
    (3)猜想CF,BF,AF之间的数量关系,并证明.
    10、如图,AD是的高,CE是的角平分线.若,,求的度数.


    -参考答案-
    一、单选题
    1、C
    【分析】
    根据题意在AB上截取BE=BC,由“SAS”可证△CBD≌△EBD,可得∠CDB=∠BDE,∠C=∠DEB,可证∠ADE=∠AED,可得AD=AE,进而即可求解.
    【详解】
    解:如图,在AB上截取BE=BC,连接DE,

    ∵BD平分∠ABC,
    ∴∠ABD=∠CBD,
    在△CBD和△EBD中,

    ∴△CBD≌△EBD(SAS),
    ∴∠CDB=∠BDE,∠C=∠DEB,
    ∵∠C=2∠CDB,
    ∴∠CDE=∠DEB,
    ∴∠ADE=∠AED,
    ∴AD=AE,
    ∴△ABC的周长=AD+AE+BE+BC+CD=AB+AB+CD=27,
    故选:C.
    【点睛】
    本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.
    2、B
    【分析】
    根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案.
    【详解】
    如图,在△ABC中,CD是边AB上的中线

    ∵AD=CD=BD
    ∴∠A=∠DCA,∠B=∠DCB
    ∵∠A+∠ACB+∠B=180°
    ∴ ∠A+∠DCA+∠DCB+∠B=180
    即2∠A+2∠B=180°
    ∴∠A+∠B=90°
    ∴∠ACB=90°
    ∴△ABC是直角三角形
    故选:B
    【点睛】
    本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键.
    3、A
    【分析】
    先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.
    【详解】
    解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,
    ∴∠EFD=60°,∠ABC=45°,
    ∵BC∥AD,
    ∴∠EFD=∠FBC=60°,
    ∴∠ABF=∠FBC-∠ABC=15°,
    故选A.

    【点睛】
    本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.
    4、C
    【分析】
    根据三角形的三边关系可得,再解不等式可得答案.
    【详解】
    解:设三角形的第三边为,由题意可得:

    即,
    故选:C.
    【点睛】
    本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.
    5、C
    【分析】
    分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.
    【详解】
    A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;
    B.三角形的内角和为180°,故此选项错误;
    C.有两个角是60°,则第三个角为,所以三角形是等边三角形,故此选项正确;
    D.设,则,故,解得,所以,,此三角形不是直角三角形,故此选项错误.
    故选:C.
    【点睛】
    本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.
    6、A
    【分析】
    根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.
    【详解】
    ∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
    ∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,
    ∵∠PCM是△BCP的外角,
    ∴∠P=∠PCM−∠CBP=50°−20°=30°,
    故选:A.
    【点睛】
    本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.
    7、C
    【分析】
    设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
    【详解】
    解:设第三根木棒的长度为cm,则


    所以A,B,D不符合题意,C符合题意,
    故选C
    【点睛】
    本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
    8、B
    【分析】
    证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.
    【详解】
    解:∵△GFH为等边三角形,
    ∴FH=GH,∠FHG=60°,
    ∴∠AHF+∠GHC=120°,
    ∵△ABC为等边三角形,
    ∴AB=BC=AC=5,∠ACB=∠A=60°,
    ∵∠AHF=180°-∠FHG-∠GHC =120°-∠GHC,
    ∠HGC=180°-∠C-∠GHC =120°-∠GHC,
    ∴∠AHF=∠HGC,
    在△AFH和△CHG中

    ∴△AFH≌△CHG(AAS),
    ∴AF=CH.
    ∵△BDE和△FGH是两个全等的等边三角形,
    ∴BE=FH,
    ∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,
    =(BD+DF+AF)+(CE+BE),
    =AB+BC=10.
    故选:B.
    【点睛】
    本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.
    9、C
    【分析】
    根据三角形具有稳定性进行求解即可.
    【详解】
    解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,
    故选C.
    【点睛】
    本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
    10、B
    【分析】
    根据旋转可得,,得.
    【详解】
    解:,,

    将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
    ,,

    故选:B.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
    二、填空题
    1、5
    【分析】
    由题意易得,然后可证,则有,进而问题可求解.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴(ASA),
    ∴,
    ∵,,
    ∴,
    ∴;
    故答案为5.
    【点睛】
    本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.
    2、6.5
    【分析】
    由全等三角形的性质可得到AC=DF,从而推出AF=CD,再由,,求出,则.
    【详解】
    解:∵△ABC≌△DEF,
    ∴AC=DF,即AF+AD=CD+AD,
    ∴AF=CD,
    ∵,,
    ∴,
    ∴,
    ∴,
    故答案为:6.5.

    【点睛】
    本题主要考查了全等三角形的性质,线段的和差,解题的关键在于能够熟练掌握全等三角形的性质.
    3、##
    【分析】
    先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得.
    【详解】
    解:在和中,,


    则的面积是,
    故答案为:.
    【点睛】
    本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.
    4、70°
    【分析】
    先根据AD⊥BC可知∠ADB=∠ADC=90°,再根据直角三角形的性质求出∠1与∠DAC的度数,由∠BAC=∠1+∠DAC即可得出结论.
    【详解】
    ∵AD⊥BC,
    ∴∠ADB=∠ADC=90°,
    ∴∠DAC=90°﹣65°=25°,∠1=∠B=45°,
    ∴∠BAC=∠1+∠DAC=45°+25°=70°.
    【点睛】
    本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
    5、15
    【分析】
    连接DF,根据AE=ED,BD=3DC,可得 ,, ,,然后设△AEF的面积为x,△BDE的面积为y,则,,,,再由△ABC的面积等于35,即可求解.
    【详解】
    解:如图,连接DF,

    ∵AE=ED,
    ∴ ,,
    ∵BD=3DC,
    ∴ ,
    设△AEF的面积为x,△BDE的面积为y,则,,,,
    ∵△ABC的面积等于35,
    ∴ ,
    解得: .
    故答案为:15
    【点睛】
    本题主要考查了与三角形中线有关的面积问题,根据题意得到 ,, ,是解题的关键.
    三、解答题
    1、见解析
    【分析】
    由“ASA”可证△ABO≌△DCO,可得结论.
    【详解】
    证明:如图,记的交点为

    ∵∠ABC=∠DCB,∠1=∠2,
    又∵∠OBC=∠ABC−∠1,∠OCB=∠DCB−∠2,
    ∴∠OBC=∠OCB,
    ∴OB=OC,
    在△ABO和△DCO中,,
    ∴△ABO≌△DCO(ASA),
    ∴AB=DC.
    【点睛】
    本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.
    2、见解析
    【分析】
    根据平行线的性质可得,利用全等三角形的判定定理即可证明.
    【详解】
    证明:∵,
    ∴.
    在和中,

    ∴,
    ∴.
    【点睛】
    题目主要考查全等三角形的判定定理和平行线的性质,熟练掌握全等三角形的判定定理是解题关键.
    3、答案见解析
    【分析】
    AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
    【详解】
    解:如图,
    ……
    [答案不唯一]
    【点睛】
    本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
    4、(1)见解析;(2)见解析;(3)108°
    【分析】
    (1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;
    (2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;
    (3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.
    【详解】
    证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC
    ∴∠AEG=∠C
    ∴AB//CD
    (2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°
    ∴∠DGC+∠AHF=180°
    ∴EC//BF
    ∴∠B=∠AEG
    由(1)得∠AEG=∠C
    ∴∠B=∠C
    (3)由(2)得EC//BF
    ∴∠BFC+∠C=180°
    ∵∠BFC=4∠C
    ∴∠C=36°
    ∴∠DGC=36°
    ∵∠C+∠DGC+∠D=180°
    ∴∠D=108°
    【点睛】
    此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.
    5、(1)见解析;(2)见解析;(3)2
    【分析】
    (1)过点B作于点Q,根据AAS证明△得,再证明四边形是矩形得BQ=CG,从而得出结论;
    (2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;
    (3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和△得可求出,从而可得结论.
    【详解】
    解:(1)证明:过点B作于点Q,如图1





    又,
    ∴△


    ∴四边形是矩形


    (2)在GF上截取GH=GE,连接AH,如图2,











    (3)过点A作于点P,在FC上截取,连接,如图3,

    由(1)、(2)知,,





    ∴∠

    ∴∠


    ∴∠

    ∴AC是EH的垂直平分线,


    又∵

    ∴∠
    ∴∠
    ∵∠,
    ∴∠




    ∵∠
    ∴,即

    ∵,即

    在和中,
    AH=AM∠HAB=∠MADAB=AD
    ∴△




    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    6、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC; 等边对等角.
    【分析】
    (1)根据题目中的小路的尺规作图过程,直接作图即可.
    (2)根据垂直平分线的性质以及等边对等角进行解答即可.
    【详解】
    解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示;

    (2)解:证明:连接BD,BC,
    ∵直线l为线段AB的垂直平分线,
    ∴DA= DB ,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)
    ∴∠A=∠ABD,
    ∴∠BDC=∠A+∠ABD=2∠A.
    ∵BC=BD,
    ∴∠ACB=∠BDC ,(等边对等角)(填推理的依据)
    ∴∠ACB=2∠A.
    【点睛】
    本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键.
    7、87°,40°
    【分析】
    根据三角形外角的性质可得,,代入计算即可求出,再根据三角形内角和定理求解即可.
    【详解】
    解:∵,,
    ∴,
    ∵,
    ∴.
    【点睛】
    本题考查了三角形内角和和外角的性质,解题关键是准确识图,理清角之间的关系,准确进行计算.
    8、
    (1);
    (2).
    【分析】
    (1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
    (2)根据垂直得出,然后根据三角形内角和定理即可得.
    (1)
    解:∵,,
    ∴,
    ∵AD是角平分线,
    ∴,
    ∴;
    (2)
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.
    9、(1)20°;(2);(3)AF= CF+BF,理由见解析
    【分析】
    (1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
    (2)同(1)求解即可;
    (3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
    【详解】
    解:(1)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
    ∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
    ∴,
    ∴∠CBF=∠ABE-∠ABC=20°;
    (2)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,,AC=AE,
    ∴ ,AB=AE,
    ∴,
    ∴;
    (3)AF= CF+BF,理由如下:
    如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
    ∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
    在△AEF和△ACF中,

    ∴△AEF≌△ACF(SAS),
    ∴∠AFE=∠AFC,
    ∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
    ∴∠BFD=∠ACD=60°,
    ∴∠AFE=∠AFC=60°,
    ∴∠BFC=120°,
    ∴∠BAC+∠BFC=180°,
    ∴∠ABF+∠ACF=180°,
    ∴∠ACG+∠ACF=180°,
    ∴F、C、G三点共线,
    ∴△AFG是等边三角形,
    ∴AF=GF=CF+CG=CF+BF.

    【点睛】
    本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.
    10、
    【分析】
    AD是的高,有;由知;CE是的角平分线可得;,;在中,.
    【详解】
    解:∵AD是的高



    ∵CE是的角平分线



    ∴在中,.
    【点睛】
    本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.

    相关试卷

    数学七年级下册第十四章 三角形综合与测试课后练习题: 这是一份数学七年级下册第十四章 三角形综合与测试课后练习题,共32页。试卷主要包含了如图,在中,AD,如图,点D等内容,欢迎下载使用。

    初中数学第十四章 三角形综合与测试精练: 这是一份初中数学第十四章 三角形综合与测试精练,共33页。

    沪教版 (五四制)第十四章 三角形综合与测试课时训练: 这是一份沪教版 (五四制)第十四章 三角形综合与测试课时训练,共35页。试卷主要包含了三角形的外角和是,有下列说法等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map