终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向测试试卷(精选含详解)

    立即下载
    加入资料篮
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向测试试卷(精选含详解)第1页
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向测试试卷(精选含详解)第2页
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形定向测试试卷(精选含详解)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试综合训练题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试综合训练题,共31页。
    沪教版七年级数学第二学期第十四章三角形定向测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、若一个三角形的三个外角之比为3:4:5,则该三角形为(  )
    A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形
    2、下列四个命题是真命题的有(  )
    ①同位角相等;
    ②相等的角是对顶角;
    ③直角三角形两个锐角互余;
    ④三个内角相等的三角形是等边三角形.
    A.1个 B.2个 C.3个 D.4个
    3、如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )

    A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC
    4、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
    A.1个 B.2个 C.3个 D.4个
    5、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )
    A.10 B.15 C.17 D.19
    6、如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:①;②;③为等边三角形;④.其中正确的结论个数是( )

    A.1个 B.2个 C.3个 D.4个
    7、如图,已知为的外角,,,那么的度数是( )

    A.30° B.40° C.50° D.60°
    8、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是(  )

    A.8 B.10 C.9 D.16
    9、满足下列条件的两个三角形不一定全等的是( )
    A.周长相等的两个三角形 B.有一腰和底边对应相等的两个等腰三角形
    C.三边都对应相等的两个三角形 D.两条直角边对应相等的两个直角三角形
    10、等腰三角形的一个顶角是80°,则它的底角是( ).
    A.40° B.50° C.60° D.70°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、等腰,,底角为70°,点在边上,将分成两个三角形,当这两个三角形有一个是以为腰的等腰三角形时,则的度数是______.
    2、如图,点F,A,D,C在同一条直线上,,,,则AC等于_____.

    3、如图,在△中,已知点分别为的中点,若△的面积为,则阴影部分的面积为 _________

    4、一个等腰三角形的一边长为2,另一边长为9,则它的周长是________________.
    5、等腰三角形的两边长分别是和,则它的周长为________.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠2

    2、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.
    (1)△AMN是否是等腰三角形?说明理由;
    (2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
    ①求证:△BPM是等腰三角形;
    ②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).

    3、如图,在中,、分别是上的高和中线,,,求的长.

    4、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.

    5、已知:如图,在ABC中,AB=AC,点D、E分别在边BC,AC上,AD=AE.
    (1)若∠BAD=30°,则∠EDC= °;若∠EDC=20°,则∠BAD= °.
    (2)设∠BAD=x,∠EDC=y,写出y与x之间的关系式,并给出证明.

    6、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OA=OC=PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB =∠AOB.
    我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.
    已知:如图2,点O,C分别在∠APB的边PB,PA上,且OA=OC=PC.
    求证:∠APB =∠AOB.

    7、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,,P为上一点,当_______时,与是偏等积三角形;

    (2)如图2,四边形是一片绿色花园,、是等腰直角三角形,.
    ①与是偏等积三角形吗?请说明理由;
    ②已知的面积为.如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G.若小路每米造价600元,请计算修建小路的总造价.
    8、如图,点A,B,C,D在一条直线上,,,.

    (1)求证:.
    (2)若,,求∠F的度数.
    9、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,,.

    (1)求证:;
    (2)若,求BE的长.
    10、如图,AD为△ABC的角平分线.

    (1)如图1,若BE⊥AD于点E,交AC于点F,AB=4,AC=7.则CF=   ;
    (2)如图2,CG⊥AD于点G,连接BG,若△ABG的面积是6,求△ABC的面积;
    (3)如图3,若∠B=2∠C,AB=m,AC=n,则CD的长为    .(用含m,n的式子表示)

    -参考答案-
    一、单选题
    1、A
    【分析】
    根据三角形外角和为360°计算,求出内角的度数,判断即可.
    【详解】
    解:设三角形的三个外角的度数分别为3x、4x、5x,
    则3x+4x+5x=360°,
    解得,x=30°,
    ∴三角形的三个外角的度数分别为90°、120°、150°,
    对应的三个内角的度数分别为90°、60°、30°,
    ∴此三角形为直角三角形,
    故选:A.
    【点睛】
    本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.
    2、B
    【分析】
    利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项.
    【详解】
    ①两直线平行,同位角相等,故错误,是假命题;
    ②相等的角是对顶角,错误,是假命题;
    ③直角三角形两个锐角互余,正确,是真命题;
    ④三个内角相等的三角形是等边三角形,正确,是真命题,
    综上所述真命题有2个,
    故选:B.
    【点睛】
    本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题.
    3、C
    【分析】
    根据全等三角形的判定定理进行判断即可.
    【详解】
    解:根据题意可知:AB=AC,,
    若,则根据可以证明△ABE≌△ACD,故A不符合题意;
    若AD=AE,则根据可以证明△ABE≌△ACD,故B不符合题意;
    若BE=CD,则根据不可以证明△ABE≌△ACD,故C符合题意;
    若∠AEB=∠ADC,则根据可以证明△ABE≌△ACD,故D不符合题意;
    故选:C.
    【点睛】
    本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.
    4、C
    【分析】
    根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
    【详解】
    解:c的范围是:5﹣3<c<5+3,即2<c<8.
    ∵c是奇数,
    ∴c=3或5或7,有3个值.
    则对应的三角形有3个.
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系,准确分析判断是解题的关键.
    5、C
    【分析】
    等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.
    【详解】
    解:①当腰是3,底边是7时,3+3<7,不满足三角形的三边关系,因此舍去.
    ②当底边是3,腰长是7时,3+7>7,能构成三角形,则其周长=3+7+7=17.
    故选:C.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.
    6、D
    【分析】
    由SAS即可证明,则①正确;有∠CAE=∠CDB,然后证明△ACM≌△DCN,则②正确;由CM=CN,∠MCN=60°,即可得到为等边三角形,则③正确;由AD∥CE,则∠DAO=∠NEO=∠CBN,由外角的性质,即可得到答案.
    【详解】
    解:∵△DAC和△EBC均是等边三角形,
    ∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
    ∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,∠MCN=180°-∠ACD-∠BCE=60°,
    在△ACE和△DCB中,


    ∴△ACE≌△DCB(SAS),则①正确;
    ∴AE=BD,∠CAE=∠CDB,
    在ACM和△DCN中,

    ∴△ACM≌△DCN(ASA),
    ∴CM=CN,;则②正确;
    ∵∠MCN=60°,
    ∴为等边三角形;则③正确;
    ∵∠DAC=∠ECB=60°,
    ∴AD∥CE,
    ∴∠DAO=∠NEO=∠CBN,
    ∴;则④正确;
    ∴正确的结论由4个;
    故选D.
    【点睛】
    本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键.
    7、B
    【分析】
    根据三角形的外角性质解答即可.
    【详解】
    解:∵∠ACD=60°,∠B=20°,
    ∴∠A=∠ACD−∠B=60°−20°=40°,
    故选:B.
    【点睛】
    此题考查三角形的外角性质,关键是根据三角形外角性质解答.
    8、C
    【分析】
    延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:SΔABD=SΔADE,SΔBDC=SΔCDE,得出SΔADC=12SΔABC,求解即可.
    【详解】
    解:如图,延长BD交AC于点E,

    ∵AD平分,,
    ∴,,
    在和中,

    ∴,
    ∴,
    ∴SΔABD=SΔADE,SΔBDC=SΔCDE,
    ∴SΔADC=12SΔABC=12×18=9,
    故选:C.
    【点睛】
    题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.
    9、A
    【分析】
    根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可.
    【详解】
    解:A、周长相等的两个三角形不一定全等,符合题意;
    B、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;
    C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;
    D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符合题意.
    故选:A.
    【点睛】
    此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).
    10、B
    【分析】
    依据三角形的内角和是180°以及等腰三角形的性质即可解答.
    【详解】
    解:(180°-80°)÷2
    =100°÷2
    =50°;
    答:底角为50°.
    故选:B.
    【点睛】
    本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.
    二、填空题
    1、100°或110°
    【分析】
    画出图形,分两种情况考虑:AD=BD时,则∠ABD=∠A,由三角形内角和可求得∠ADB的度数;BD=BC时,则∠BDC=∠C=70°,从而可求得∠ADB的度数.
    【详解】
    ∵AB=AC,底角为70°
    ∴∠ABC=∠C=70°,∠A=180°−(∠ABC+∠C)=40°

    当AD=BD时,如图1,则∠ABD=∠A=40°
    ∴∠ADB=180°−(∠A+∠ABD)=180°−80°=100°
    当BD=BC时,如图2,则∠BDC=∠C=70°
    ∴∠ADB=180°−∠BDC=180°−70°=110°
    综上所述,∠ADB的度数为100°或110°
    【点睛】
    本题考查了等腰三角形的性质、三角形内角和定理等知识,涉及分类讨论,关键是等腰三角形的性质,另外要注意分类讨论.
    2、6.5
    【分析】
    由全等三角形的性质可得到AC=DF,从而推出AF=CD,再由,,求出,则.
    【详解】
    解:∵△ABC≌△DEF,
    ∴AC=DF,即AF+AD=CD+AD,
    ∴AF=CD,
    ∵,,
    ∴,
    ∴,
    ∴,
    故答案为:6.5.

    【点睛】
    本题主要考查了全等三角形的性质,线段的和差,解题的关键在于能够熟练掌握全等三角形的性质.
    3、1
    【分析】
    根据三角形的中线把三角形分成两个面积相等的三角形解答.
    【详解】
    解:∵点E是AD的中点,
    ∴S△ABE=S△ABD,S△ACE=S△ADC,
    ∴S△ABE+S△ACE=S△ABC=×4=2cm2,
    ∴S△BCE=S△ABC=×4=2cm2,
    ∵点F是CE的中点,
    ∴S△BEF=S△BCE=×2=1cm2.
    故答案为:1.
    【点睛】
    本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.
    4、20
    【分析】
    题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
    【详解】
    解:分两种情况:当腰为2时,2+2<9,所以不能构成三角形;
    当腰为9时,2+9>9,所以能构成三角形,周长是:2+9+9=20.
    故答案为:20.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
    5、22
    【分析】
    分两种情况讨论:当腰长为时, 当腰长为时,再结合三角形的三边关系,从而可得答案.
    【详解】
    解: 等腰三角形的两边长分别是和,
    当腰长为时,此时 不符合题意,舍去,
    当腰长为时,此时 符合题意,
    所以三角形的周长为:
    故答案为:
    【点睛】
    本题考查的是等腰三角形的定义,三角形的三边关系,掌握“等腰三角形的两腰相等,再分情况讨论”是解本题的关键.
    三、解答题
    1、见详解.
    【分析】
    根据等腰三角形三合一性质以及等边对等角性质得出AD⊥BC,∠B=∠C,根据AF⊥AD,利用在同一平面内垂直同一直线的两直线平行得出AF∥BC,利用平行线性质得出∠1=∠B,∠2=∠C即可.
    【详解】
    证明:∵△ABC中,AB=AC,D为BC边的中点,
    ∴AD⊥BC,∠B=∠C,
    ∵AF⊥AD,
    ∴AF∥BC,
    ∴∠1=∠B,∠2=∠C,
    ∴∠1=∠2.
    【点睛】
    本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键.
    2、
    (1)△AMN是是等腰三角形;理由见解析;
    (2)①证明见解析;②a﹣b.
    【分析】
    (1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;
    (2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;
    ②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.
    (1)
    解:△AMN是是等腰三角形,
    理由如下:
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵MN∥BC,
    ∴∠AMN=∠ABC,∠ANM=∠ACB,
    ∴∠AMN=∠ANM,
    ∴AM=AN,
    ∴△AMN是等腰三角形;
    (2)
    ①证明:∵BP平分∠ABC,
    ∴∠PBM=∠PBC,
    ∵MN∥BC,
    ∴∠MPB=∠PBC
    ∴∠PBM=∠MPB,
    ∴MB=MP,
    ∴△BPM是等腰三角形;
    ②由①知MB=MP,
    同理可得:NC=NP,
    ∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,
    ∵△ABC的周长为a,BC=b,
    ∴AB+AC+b=a,
    ∴AB+AC=a﹣b
    ∴△AMN的周长=a﹣b.
    【点睛】
    本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.
    3、6cm
    【分析】
    先根据中线的定义结合已知条件求得AB,然后再运用三角形的面积公式求解即可.
    【详解】
    解:∵是边上的中线,
    ∴是的中点,
    ∴,
    ∵,
    ∴,
    ∴=.
    【点睛】
    本题主要考查了三角形的中线的定义以及三角形的面积公式,掌握三角形中线的定义成为解答本题的关键.
    4、∠AFB=40°.
    【分析】
    由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
    【详解】
    解:∵AD⊥BE,
    ∴∠ADC=90°,
    ∵∠DAC=10°,
    ∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
    ∵AE是∠MAC的平分线,BF平分∠ABC,
    ∴,
    又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
    ∴∠AFB=∠MAE﹣∠ABF=.
    【点睛】
    本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
    5、(1)15,40;(2)y=x,见解析
    【分析】
    (1)设∠EDC=m,则∠B=∠C=n,根据∠ADE=∠AED=m+n,∠ADC=∠B+∠BAD即可列出方程,从而求解.
    (2)设∠BAD=x,∠EDC=y,根据等腰三角形的性质可得∠B=∠C,∠ADE=∠AED=∠C+∠EDC=∠B+y,由∠ADC=∠B+∠BAD=∠ADE+∠EDC即可得∠B+x=∠B+y+y,从而求解.
    【详解】
    解:(1)设∠EDC=m,∠B=∠C=n,
    ∵∠AED=∠EDC+∠C=m+n,
    又∵AD=AE,
    ∴∠ADE=∠AED=m+n,
    则∠ADC=∠ADE+∠EDC=2m+n,
    又∵∠ADC=∠B+∠BAD,
    ∴∠BAD=2m,
    ∴2m+n=n+30,解得m=15°,
    ∴∠EDC的度数是15°;
    若∠EDC=20°,则∠BAD=2m=2×20°=40°.
    故答案是:15;40;
    (2)y与x之间的关系式为y=x,
    证明:设∠BAD=x,∠EDC=y,
    ∵AB=AC,AD=AE,
    ∴∠B=∠C,∠ADE=∠AED,
    ∵∠AED=∠C+∠EDC=∠B+y,
    ∴∠ADC=∠B+∠BAD=∠ADE+∠EDC,
    ∴∠B+x=∠B+y+y,
    ∴2y=x,
    ∴y=x.
    【点睛】
    本题主要考查了等腰三角形的性质、三角形外角的性质以及一元一次方程的应用,灵活运用等腰三角形的性质成为解答本题的关键.
    6、见解析
    【分析】
    由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明.
    【详解】
    解:,
    为等腰三角形,

    由外角的性质得:,

    再由外角的性质得:,


    【点睛】
    本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.
    7、(1);(2)①与是偏等积三角形,理由见详解;②修建小路的总造价为元
    【分析】
    (1)当时,则,证,再证与不全等,即可得出结论;
    (2)①过作于,过作于,证,得,则,再证与不全等,即可得出结论;②过点作,交的延长线于,证得,得到,再证,得,由余角的性质可证,然后由三角形面积和偏等积三角形的定义得,,求出,即可求解.
    【详解】
    解:(1)当时,与是偏等积三角形,理由如下:
    设点到的距离为,则,,

    ,,

    、,
    与不全等,
    与是偏等积三角形,
    故答案为:;
    (3)①与是偏等积三角形,理由如下:
    过作于,过作于,如图3所示:

    则,
    、是等腰直角三角形,
    ,,,



    在和中,



    ,,

    ,,

    ,,
    与不全等,
    与是偏等积三角形;
    ②如图4,过点作,交的延长线于,

    则,
    点为的中点,

    在和中,










    在和中,







    由①得:与是偏等积三角形,
    ,,

    修建小路的总造价为:(元.
    【点睛】
    本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明和是解题的关键,属于中考常考题型.
    8、(1)见解析;(2)
    【分析】
    (1)根据平行线的性质可得,根据线段的和差关系可得,进而根据即证明;
    (2)根据三角形内角和定理以及补角的意义求得∠E,进而根据(1)的结论即可求得∠F.
    【详解】
    (1)证明:




    又,

    (2)解:,,




    【点睛】
    本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键.
    9、
    (1)见解析
    (2)
    【分析】
    (1)利用是的外角,以及证明即可.
    (2)证明≌,可知,从而得出答案.
    (1)
    证明:∵是的外角,
    ∴.
    又∵,∴.
    (2)
    解:在和中,

    ∴≌.
    ∴.
    ∵,
    ∴.
    【点睛】
    本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.
    10、
    (1)3
    (2)12
    (3)
    【分析】
    (1)利用ASA证明△AEF≌△ABE,得AE=AB=4,得出答案;
    (2)延长CG、AB交于点H,设S△BGC=S△HGB=a,用两种方法表示△ACH的面积即可;
    (3)在AC上取AN=AB,可得CD=DN=n-m,根据△ABD和△ACD的高相等,面积比等于底之比可求出CD的长.
    (1)
    ∵AD是△ABC的平分线,
    ∴∠BAD=∠CAD,
    ∵BE⊥AD,
    ∴∠BEA=∠FEA,
    在△AEF和△AEB中,

    ∴△AEF≌△AEB(ASA),
    ∴AF=AB=4,
    ∵AC=7
    ∴CF=AC-AF=7-4=3,
    故答案为:3;
    (2)
    延长CG、AB交于点H,如图,

    由(1)知AC=AH,点G为CH的中点,
    设S△BGC=S△HGB=a,
    根据△ACH的面积可得:
    S△ABC+2a=2(6+a),
    ∴S△ABC=12;
    (3)
    在AC上取AN=AB,如图,

    ∵AD是△ABC的平分线,
    ∴∠NAD=∠BAD,
    在△ADN与△ADB中,

    ∴△ADN≌△ADB(SAS),
    ∴∠AND=∠B,DN=BD,
    ∵∠B=2∠C,
    ∴∠AND=2∠C,
    ∴∠C=∠CDN,
    ∴CN=DN=AC-AB=n-m,
    ∴BD=DN=n-m,
    根据△ABD和△ACD的高相等,面积比等于底之比可得:

    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后复习题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后复习题,共34页。试卷主要包含了若一个三角形的三个外角之比为3等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题,共35页。试卷主要包含了下列三角形与下图全等的三角形是,定理等内容,欢迎下载使用。

    沪教版 (五四制)第十四章 三角形综合与测试课时训练:

    这是一份沪教版 (五四制)第十四章 三角形综合与测试课时训练,共35页。试卷主要包含了三角形的外角和是,有下列说法等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map