初中北京课改版第十五章 四边形综合与测试单元测试练习
展开京改版八年级数学下册第十五章四边形单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为( )
A.16 B.24 C.32 D.40
2、如图,在六边形中,若,则( )
A.180° B.240° C.270° D.360°
3、下列图形中,既是轴对称图形又是中心对称图形的是( ).
A. B.
C. D.
4、下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
5、下列测量方案中,能确定四边形门框为矩形的是( )
A.测量对角线是否互相平分 B.测量两组对边是否分别相等
C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等
6、下列说法中,不正确的是( )
A.四个角都相等的四边形是矩形
B.对角线互相平分且平分每一组对角的四边形是菱形
C.正方形的对角线所在的直线是它的对称轴
D.一组对边相等,另一组对边平行的四边形是平行四边形
7、下列图形中,是中心对称图形的是( )
A. B. C. D.
8、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A.2.5 B.2 C. D.
9、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
10、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使与全等时,则t的值为( )
A.2 B.2或1.5 C.2.5 D.2.5或2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是 _____.
2、如图,在平行四边形ABCD中,,E、F分别在CD和BC的延长线上,,,则______.
3、如图,在矩形ABCD中,AB=2,AD=2,E为BC边上一动点,F、G为AD边上两个动点,且∠FEG=30°,则线段FG的长度最大值为 _____.
4、在平面直角坐标系中,与点关于原点对称的点的坐标是________.
5、已知一个多边形内角和1800度,则这个多边形的边数_____.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,,,AD是BC上的高线,CE是AB边上的中线,于G.
(1)若,求线段AC的长;
(2)求证:.
2、如图,正方形ABCD的边长为4,连接对角线AC,点E为BC边上一点,将线段AE绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过F作FM⊥AC于点M.
(1)求证:BE=FM;
(2)求BE的长度.
3、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数.
4、如图,已知在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,点E是边BC延长线上一点,连接AE、DE,过点C作CF⊥DE于点F,且DF=EF.
(1)求证:AD=CE.
(2)若CD=5,AC=6,求△AEB的面积.
5、如图,将矩形沿折叠,使点落在边上的点处;再将矩形沿折叠,使点落在点处且过点.
(1)求证:四边形是平行四边形;
(2)当是多少度时,四边形为菱形?试说明理由.
-参考答案-
一、单选题
1、C
【分析】
由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE//BC,DE=BC,根据平行线的性质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.
【详解】
∵D,E分别是AB,AC的中点,
∴AE=CE,AD=BD,DE为△ABC的中位线,
∴DE//BC,DE=BC,
∵∠ABC=90°,
∴∠ADE=∠ABC=90°,
在△MBD和△EDA中,,
∴△MBD≌△EDA,
∴MD=AE,DE=MB,
∵DE//MB,
∴四边形DMBE是平行四边形,
∴MD=BE,
∵AC=18,BC=14,
∴四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32.
故选:C.
【点睛】
本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.
2、C
【分析】
根据多边形外角和求解即可.
【详解】
解: ,
,
故选:C
【点睛】
本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键.
3、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
B.既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;
C.既是轴对称图形,又是中心对称图形,故本选项符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
4、A
【分析】
根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可.
【详解】
解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,
A选项是中心对称图形.故本选项正确.
故选:A.
【点睛】
本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键.
5、D
【分析】
由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.
【详解】
解:A、∵对角线互相平分的四边形是平行四边形,
∴对角线互相平分且相等的四边形才是矩形,
∴选项A不符合题意;
B、∵两组对边分别相等是平行四边形,
∴选项B不符合题意;
C、∵对角线互相平分且相等的四边形才是矩形,
∴对角线相等的四边形不是矩形,
∴选项C不符合题意;
D、∵对角线交点到四个顶点的距离都相等,
∴对角线互相平分且相等,
∵对角线互相平分且相等的四边形是矩形,
∴选项D符合题意;
故选:D.
【点睛】
本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.
6、D
【分析】
根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.
【详解】
解:A、四个角都相等的四边形是矩形,说法正确;
B、正方形的对角线所在的直线是它的对称轴,说法正确;
C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;
D、一组对边相等且平行的四边形是平行四边形,原说法错误;
故选:D.
【点睛】
本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.
7、B
【分析】
根据中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
【详解】
选项、、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,
选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,
故选:.
【点睛】
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
8、D
【分析】
利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.
【详解】
解:四边形OABC是矩形,
,
在中,由勾股定理可知:,
,
弧长为,故在数轴上表示的数为,
故选:.
【点睛】
本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.
9、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A、不是轴对称图形,是中心对称图形,不符合题意;
B、是轴对称图形,不是中心对称图形,不符合题意;
C、既是轴对称图形,又是中心对称图形,符合题意;
D、是轴对称图形,不是中心对称图形,不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
10、D
【分析】
根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.
【详解】
解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,
∵AB=BC=10厘米,AE=4厘米,
∴BE=CP=6厘米,
∴BP=10-6=4厘米,
∴运动时间t=4÷2=2(秒);
当,即点Q的运动速度与点P的运动速度不相等,
∴BP≠CQ,
∵∠B=∠C=90°,
∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
∴点P,Q运动的时间t=(秒).
综上t的值为2.5或2.
故选:D.
【点睛】
本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.
二、填空题
1、
【分析】
设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果.
【详解】
解:设,
四边形为正方形,
,,
点为的中点,
,
,
,
,
四边形为正方形,
,
,
故答案为:.
【点睛】
本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长.
2、8
【分析】
证明四边形ABDE是平行四边形,得到DE=CD=,, 过点E作EH⊥BF于H,证得CH=EH,利用勾股定理求出EH,再根据30度角的性质求出EF.
【详解】
解:∵四边形ABCD是平行四边形,
∴,AB=CD,
∵,
∴四边形ABDE是平行四边形,
∴DE=CD=,,
过点E作EH⊥BF于H,
∵,
∴∠ECH=,
∴CH=EH,
∵,,
∴CH=EH=4,
∵∠EHF=90°,,
∴EF=2EH=8,
故答案为:8.
【点睛】
此题考查了平行四边形的判定及性质,勾股定理,直角三角形30度角的性质,熟记各知识点并应用解决问题是解题的关键.
3、
【分析】
如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形,故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大,则由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,则AF=,则FG=AD-AF=.
【详解】
如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形
故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大
∵矩形ABCD中,AB=2,AD=2
∴∠ABD=60°
∴∠ABF=60°-30°=30°
∴AF=
∴FG=AD-AF=.
故答案为:.
【点睛】
本题考查了四边形中动点问题,图解法数学思想依据是数形结合思想. 它的应用能使复杂问题简单化、 抽象问题具体化. 特殊四边形的几何问题, 很多困难源于问题中的可动点. 如何合理运用各动点之间的关系,同学们往往缺乏思路, 常常导致思维混乱.实际上求解特殊四边形的动点问题,关键是是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式, 确定运动变化过程中的数量关系, 图形位置关系, 分类画出符合题设条件的图形进行讨论, 就能找到解决的途径, 有效避免思维混乱.
4、(-3,-1)
【分析】
由题意直接根据两个点关于原点对称时,它们的坐标符号相反进行分析即可得出答案.
【详解】
解:在平面直角坐标系中,与点关于原点对称的点的坐标是(-3,-1).
故答案为:(-3,-1).
【点睛】
本题考查的是关于原点的对称的点的坐标,注意掌握平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.
5、12
【分析】
设这个多边形的边数为n,根据多边形的内角和定理得到,然后解方程即可.
【详解】
解:设这个多边形的边数是n,
依题意得,
∴,
∴.
故答案为:12.
【点睛】
考查了多边形的内角和定理,关键是根据n边形的内角和为解答.
三、解答题
1、(1);(2)见解析
【分析】
(1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;
(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可.
【详解】
(1)
,
;
(2)连接DE
,
,
,,
,
,
.
【点睛】
本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.
2、(1)见解析;(2)—4
【分析】
(1)由旋转和正方形的性质得出∠FAM=∠EAB,再证≌即可;
(2)求出正方形对角线长,再求出MC=—4即可.
【详解】
(1)证明:在正方形ABCD中,线段AE绕点A逆时针旋转45°得到线段AF
∠CAB=45°,∠EAF=45°,AE=AF
∠FAM=∠EAB
∵FM⊥AC
∠FMA=∠B=90°
≌(AAS)
BE=FM
(2)在正方形ABCD中,边长为4
AC=,∠DCA=45°
≌
∴AM=AB=4
MC=AC—AM=—4
∵是等腰直角三角形
BE=MF=MC=—4
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,解题关键是熟练运用正方形的性质和全等三角形的判定进行证明推理.
3、这个多边形的边数是6
【分析】
多边形的外角和是360°,内角和是它的外角和的2倍,则内角和为2×360=720度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,即可得到方程,从而求出边数.
【详解】
解:设这个多边形的边数为n,
由题意得:(n-2)×180°=2×360°,
解得n=6,
∴这个多边形的边数是6.
【点睛】
此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为360°.
4、(1)见解析;(2)39
【分析】
(1)首先根据CF⊥DE,DF=EF得出CF为DE的中垂线,然后根据垂直平分线的性质得到CD=CE,然后根据直角三角形斜边上的中线等于斜边的一半得到CD=AD,即可证明AD=CE;
(2)由(1)得CD=CE=AB=5,由勾股定理求出BC,然后结合三角形的面积公式进行计算.
【详解】
(1)证明:∵DF=EF
∴点F为DE的中点
又∵CF⊥DE
∴CF为DE的中垂线
∴CD=CE
又∵在Rt△ABC中,∠ACB=90°,
CD是斜边AB上的中线
∴CD==AD
∴AD=CE
(2)解:由(1)得CD=CE==5
∴AB=10
∴在Rt△ABC中,BC==8
∴EB=EC+BC=13
∴ .
【点睛】
此题考查了垂直平分线的判定和性质,直角三角形性质,三角形面积公式等知识,解题的关键是熟练掌握垂直平分线的判定和性质,直角三角形性质,三角形面积公式.
5、(1)见解析;(2)当∠B1FE=60°时,四边形EFGB为菱形,理由见解析
【分析】
(1)由题意,,结合,得,同理可得,即,结合,依据平行四边形的判定定理即可证明四边形BEFG是平行四边形;
(2)根据菱形的性质可得,结合(1)中结论得出为等边三角形,依据等边三角形的性质及(1)中结论即可求出角的大小.
【详解】
证明:(1)∵,
∴.
又∵,
∴.
∴.
同理可得:.
∴,
又∵,
∴四边形BEFG是平行四边形;
(2)当时,四边形EFGB为菱形.
理由如下:
∵四边形BEFG是菱形,
∴,
由(1)得:,
∴,
∴为等边三角形,
∴,
∴.
【点睛】
题目主要考查平行四边形和菱形的判定定理和性质,矩形的折叠问题,等边三角形的性质,熟练掌握特殊四边形的判定和性质是解题关键.
北京课改版八年级下册第十五章 四边形综合与测试综合训练题: 这是一份北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共29页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。
初中数学北京课改版八年级下册第十五章 四边形综合与测试精练: 这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试精练,共26页。试卷主要包含了如图,M,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
北京课改版八年级下册第十五章 四边形综合与测试练习: 这是一份北京课改版八年级下册第十五章 四边形综合与测试练习,共24页。