北京课改版八年级下册第十五章 四边形综合与测试综合训练题
展开这是一份北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共29页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法中,正确的是( )
A.若,,则
B.90′=1.5°
C.过六边形的每一个顶点有4条对角线
D.疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查
2、下面图案中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
3、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )
A.梯形 B.菱形 C.矩形 D.正方形
4、下列图案中,是中心对称图形的是( )
A. B. C. D.
5、下列图标中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
6、下列测量方案中,能确定四边形门框为矩形的是( )
A.测量对角线是否互相平分 B.测量两组对边是否分别相等
C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等
7、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )
A. B. C. D.
8、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )
A.14或15或16 B.15或16或17 C.15或16 D.16或17
9、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若=10°,则∠EAF的度数为( )
A.40° B.45° C.50° D.55°
10、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是( )
A.120° B.118° C.110° D.108°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 ___.
2、如图,将矩形ABCD折叠,使点C与点A重合,折痕为EF.若AF=5,BF=3,则AC的长为 _____.
3、如图,四边形和四边形都是边长为4的正方形,点是正方形对角线的交点,正方形绕点旋转过程中分别交,于点,,则四边形的面积为______.
4、若点关于原点的对称点是,则______.
5、判断:
(1)菱形的对角线互相垂直且相等(________)
(2)菱形的对角线把菱形分成四个全等的直角三角形(________)
三、解答题(5小题,每小题10分,共计50分)
1、如图1,矩形ABCD中,AB=9,AD=12,点G在CD上,且DG=5,点P从点B出发,以1单位每秒的速度在BC边上向点C运动,设点P的运动时间为x秒.
(1)△APG的面积为y,求y关于x的函数关系式,并求y=34时x的值;
(2)在点P从B向C运动的过程中,是否存在使AP⊥GP的时刻?若存在,求出x的值,若不存在,请说明理由;
(3)如图2,M,N分别是AP、PG的中点,在点P从B向C运动的过程中,线段MN所扫过的图形是什么形状 ,并直接写出它的面积 .
2、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:
①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类似的思想提出了如下命题:
③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.
任务要求:
(1)请你从①②③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索;
①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);
②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.
3、如图,在平行四边形中,,..点在上由点向点出发,速度为每秒;点在边上,同时由点向点运动,速度为每秒.当点运动到点时,点,同时停止运动.连接,设运动时间为秒.
(1)当为何值时,四边形为平行四边形?
(2)设四边形的面积为,求与之间的函数关系式.
(3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数.
(4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由.
4、如图,在中,AD>AB,∠ABC的平分线交AD于点F,EFAB交BC于点E.
(1)求证:四边形ABEF是菱形;
(2)若AB=5,AE=6,的面积为36,求DF的长.
5、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影.
(1)请在下面①②③三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);
(2)在④⑤两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同).
-参考答案-
一、单选题
1、B
【分析】
由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.
【详解】
解:若,则故A不符合题意;
90′=故B符合题意;
过六边形的每一个顶点有3条对角线,故C不符合题意;
疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;
故选:B.
【点睛】
本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.
2、D
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;
B.是轴对称图形,不是中心对称图形,故此选项不合题意;
C.不是轴对称图形,是中心对称图形,故此选项不合题意;
D.既是轴对称图形又是中心对称图形,故此选项符合题意.
故选:D.
【点睛】
本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键.
3、B
【分析】
根据题意得到,然后根据菱形的判定方法求解即可.
【详解】
解:由题意可得:,
∴四边形是菱形.
故选:B.
【点睛】
此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.
4、B
【分析】
由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.
【详解】
解:A、C、D都是轴对称图形,只有B选项是中心对称图形.
故选:B.
【点睛】
本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、B
【分析】
由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.
【详解】
解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.
【点睛】
本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
6、D
【分析】
由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.
【详解】
解:A、∵对角线互相平分的四边形是平行四边形,
∴对角线互相平分且相等的四边形才是矩形,
∴选项A不符合题意;
B、∵两组对边分别相等是平行四边形,
∴选项B不符合题意;
C、∵对角线互相平分且相等的四边形才是矩形,
∴对角线相等的四边形不是矩形,
∴选项C不符合题意;
D、∵对角线交点到四个顶点的距离都相等,
∴对角线互相平分且相等,
∵对角线互相平分且相等的四边形是矩形,
∴选项D符合题意;
故选:D.
【点睛】
本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.
7、A
【分析】
根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值. 连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;
【详解】
解:∵ED=EM,MF=FN,
∴EF=DN,
∴DN最大时,EF最大,
∴N与B重合时DN=DB最大,
在Rt△ADH中, ∵∠A=60°
∴AH=2×=1,DH=,
∴BH=AB﹣AH=3﹣1=2,
∴DB=,
∴EFmax=DB=,
∴EF的最大值为.
故选A
【点睛】
本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键.
8、A
【分析】
由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.
【详解】
解:设新多边形的边数为n,
则(n-2)•180°=2340°,
解得:n=15,
①若截去一个角后边数增加1,则原多边形边数为14,
②若截去一个角后边数不变,则原多边形边数为15,
③若截去一个角后边数减少1,则原多边形边数为16,
所以多边形的边数可以为14,15或16.
故选:A.
【点睛】
本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.
9、A
【分析】
可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.
【详解】
解:设∠EAD′=α,∠FAB′=β,
根据折叠性质可知:
∠DAF=∠D′AF,∠BAE=∠B′AE,
∵∠B′AD′=10°,
∴∠DAF=10°+β,
∠BAE=10°+α,
∵四边形ABCD是矩形
∴∠DAB=90°,
∴10°+β+β+10°+10°+α+α=90°,
∴α+β=30°,
∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,
=10°+α+β,
=10°+30°,
=40°.
则∠EAF的度数为40°.
故选:A.
【点睛】
本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.
10、D
【分析】
由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.
【详解】
解:∵五边形ABCDE为正五边形,
∴AB=BC,∠ABM=∠C,
在△ABM和△BCN中
,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BAM+∠ABP=∠APN,
∴∠CBN+∠ABP=∠APN=∠ABC=
∴∠APN的度数为108°;
故选:D.
【点睛】
本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.
二、填空题
1、6
【分析】
根据内角和等于外角和的2倍则内角和是720°利用多边形内角和公式得到关于边数的方程,解方程就可以求出多边形的边数.
【详解】
解:根据题意,得
(n﹣2)•180=360×2,
解得:n=6.
故这个多边形的边数为6.
故答案为:6.
【点睛】
本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.
2、
【分析】
根据矩形的性质得到∠B=90°,根据勾股定理得到,根据折叠的性质得到CF=AF=5,根据勾股定理即可得到结论.
【详解】
解:∵四边形ABCD是矩形,
∴∠B=90°,
∵AF=5,BF=3,
∴,
∵将矩形ABCD折叠,使点C与点A重合,折痕为EF.
∴CF=AF=5,
∴BC=BF+CF=8,
∴,
故答案为:.
【点睛】
本题主要考查了矩形与折叠问题,勾股定理,解题的关键在于能够熟练掌握折叠的性质.
3、4
【分析】
过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,把四边形的面积转化为正方形OGBH的面积,等于正方形ABCD面积的.
【详解】
如图,过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,
∵四边形ABCD的对角线交点为O,
∴OA=OC,∠ABC=90°,AB=BC,
∴OG∥BC,OH∥AB,
∴四边形OGBH是矩形,OG=OH=,∠GOH=90°,
∴=4,
∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,
∴∠FOH=∠EOG,
∵∠OGE=∠OHF=90°,OG=OH,
∴△OGE≌△OHF,
∴,
∴,
∴=4,
故答案为:4.
【点睛】
本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键.
4、
【分析】
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
【详解】
解:由关于坐标原点的对称点为,得,
,
解得:
故答案为:.
【点睛】
本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
5、× √
【分析】
根据菱形的性质,即可求解.
【详解】
解:(1)菱形的对角线互相垂直且平分;
(2)菱形的对角线把菱形分成四个全等的直角三角形.
故答案为:(1)×;(2)√
【点睛】
本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键.
三、解答题
1、(1)y=-2.5x+54,x=8;(2)存在,x=6;(3)平行四边形;15.
【分析】
(1)PB=x,PC=12-x,然后依据△APG的面积=矩形的面积-三个直角三角形的面积可得到y与x的函数关系式,然后将y=34代入函数关系式可求得x的值;
(2)先依据勾股定理求得PA、PG、AG的长,然后依据勾股定理的逆定理列出关于x的方程,从而可求得x的值;
(3)确定出点P分别与点B和点C重合时,点M、N的位置,然后依据三角形的中位线定理可证明M1M2∥N1N2,N1N2=M1M2,从而可判断出MN扫过区域的形状,然后依据平行四边形的面积公式求解即可.
【详解】
解:(1)∵四边形ABCD为矩形,
∴DC=AB=9,AD=BC=12.
∵DG=5,
∴GC=4.
∵PB=x,PC=12-x,
∴y=9×12-×9×x-×4×(12-x)-×5×12,整理得:y=-2.5x+54.
当y=34时,-2.5x+54=34,解得x=8;
(2)存在.
∵PB=x,PC=12-x,AD=12,DG=5,
∴PA2=AB2+BP2=81+x2,PG2=PC2+GC2=(12-x)2+16,AG2=AD2+DG2=169.
∵当AG2=AP2+PG2时,AP⊥PG,
∴81+x2+(12-x)2+16=169,整理得:x2-12x+36=0,配方得:(x-6)2=0,
解得:x=6;
(3)如图所示:
∵当点P与点B重合时,点M位于M1处,点N位于点N1处,
∴M1为AB的中点,点N1位GB的中点.
∵当点P与点C重合时,点M位于M2处,点N位于点N2处,
∴M2为AC的中点,点N2位CG的中点.
∴M1M2∥BC,M1M2=BC,N1N2∥BC,N1N2=BC.
∴M1M2∥N1N2,N1N2=M1M2.
∴四边形M1M2N2N1为平行四边形.
∴MN扫过的区域为平行四边形.
S=BC•(AB-CG)=6×2.5=15,
故答案为:平行四边形;15.
【点睛】
本题主要考查了列函数关系式、三角形的面积公式、三角形的中位线定理、平行四边形的判定和性质、勾股定理的应用,画出MN扫过的图形是解题的关键.
2、(1)选①或②或③,证明见详解;(2)①当时,结论成立;②当时,还成立,证明见详解.
【分析】
(1)命题①,根据等边三角形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题②,根据正方形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题③,根据正五边形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;
(2)①根据(1)中三个命题的结果,得出相应规律,即可得解;
②连接BD、CE,根据全等三角形的判定定理和性质可得:, ,,,利用各角之间的关系及等量代换可得:, ,继续利用全等三角形的判定定理和性质即可得出证明.
【详解】
解:(1)如选命题①,证明:如图所示:
∵ ,
∴ ,
∵ ,
∴ ,
在 与ΔCAN中,
,
∴ ,
∴ ;
如选命题②,
证明:如图所示:
∵ ,
∴ ,
∵ ,
∴ ,
在 与ΔCDN中,
,
∴ ,
∴ ;
如选命题③,
证明:如图所示:
∵ ,
∴ ,
∵ ,
∴ ,
在 与ΔCDN中,
,
∴ ,
∴ ;
(2)①根据(1)中规律可得:当时,结论成立;
②答:当时,成立.
证明:如图所示,连接BD、CE,
在和中,
,
∴ ,
∴ ,,,
∵ ,
∴ ,
∵ ,.
∴ ,
又∵ ,
∴ ,
在和中,
,
∴ ,
∴ .
【点睛】
题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键.
3、(1);(2)y=S四边形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)当t=4或 或时,为等腰三角形,理由见解析.
【分析】
(1)利用平行四边形的对边相等AQ=BP建立方程求解即可;
(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;
(3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;
(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.
【详解】
解:(1)∵在平行四边形中,,,
由运动知,AQ=16−t,BP=2t,
∵四边形ABPQ为平行四边形,
∴AQ=BP,
∴16−t=2t
∴t=,
即:t=s时,四边形ABPQ是平行四边形;
(2)过点A作AE⊥BC于E,如图,
在Rt△ABE中,∠B=30°,AB=8,
∴AE=4,
由运动知,BP=2t,DQ=t,
∵四边形ABCD是平行四边形,
∴AD=BC=16,
∴AQ=16−t,
∴y=S四边形ABPQ=(BP+AQ)•AE=(2t+16−t)×4=2t+32(0<t≤8);
(3)由(2)知,AE=4,
∵BC=16,
∴S四边形ABCD=16×4=64,
由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),
∵四边形ABPQ的面积是四边形ABCD的面积的四分之三
∴2t+32=×64,
∴t=8;
如图,
当t=8时,点P和点C重合,DQ=8,
∵CD=AB=8,
∴DP=DQ,
∴∠DQC=∠DPQ,
∴∠D=∠B=30°,
∴∠DQP=75°;
(4)①当AB=BP时,BP=8,
即2t=8,t=4;
②当AP=BP时,如图,
∵∠B=30°,
过P作PM垂直于AB,垂足为点M,
∴BM=4,,
解得:BP=,
∴2t=,
∴t=
③当AB=AP时,同(2)的方法得,BP=,
∴2t=,
∴t=
所以,当t=4或 或时,△ABP为等腰三角形.
【点睛】
此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.
4、(1)见解析;(2)2.5.
【分析】
(1)根据平行四边形的性质和角平分线的性质说明∠ABF=∠AFB、可得AB=AF,同理可得AB=AF,再由AF∥BE可得四边形ABEF是菱形;
(2)过A作AH⊥BE垂足为E,根据菱形的性质可得AO=EO、BO=FO,AF=EF=AB=5,AE⊥BF,利用勾股定理可得AO的长,进而可得AE长,利用菱形的面积公式计算出AH的长,然后根据ABCD的面积公式求出AD,最后根据线段的和差即可解答.
【详解】
(1)证明:四边形ABCD是平行四边形,
∴AD//BC,即AF//BE
∴∠FBE=∠AFB,
∵∠ABC的平分线交AD于点F,
∴∠ABF=∠EBF,
∴∠ABF=∠AFB,
∴AB=AF,
又∵AB//EF,AF//BE
∴四边形ABEF是平行四边形,
∵AB=AF,
∴四边形ABEF是菱形;
(2)如图:过A作AH⊥BE垂足为H,
∵四边形ABCD是菱形,
∴AO=EO,BO=FO,AF=AB=5,AE⊥BF,
∵AE=6,
∴AO=3,
∴BO=
∴BF=8,
∴S菱形ABEF=AE·BF=×8×6=24,
∴BE·AH=24,
∴AH=;
∵S平行四边形ABCD=BC·AH=36,
∴BC=
∵平行四边形ABCD
∴AD=BC=
∴FD=AD-AF=-5=2.5.
.
【点睛】
本题主要考查了菱形的判定与性质、平行四边形的性质以及面积的问题,灵活利用菱形的判定与性质、平行四边形的性质成为解答本题的关键.
5、(1)见解析;(2)见解析
【分析】
(1)直接利用轴对称图形的性质得出符合题意的答案;
(2)直接利用中心对称图形的性质得出符合题意的答案.
【详解】
解:(1)如图所示:①②③都是轴对称图形;
(2)如图所示:④⑤都是中心对称图形.
.
【点睛】
此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键.
相关试卷
这是一份初中数学第十五章 四边形综合与测试同步测试题,共22页。
这是一份北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共33页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试精练,共26页。试卷主要包含了如图,M,下列图形中,是中心对称图形的是等内容,欢迎下载使用。