终身会员
搜索
    上传资料 赚现金

    2021-2022学年最新京改版八年级数学下册第十五章四边形专项攻克试题(含详细解析)

    立即下载
    加入资料篮
    2021-2022学年最新京改版八年级数学下册第十五章四边形专项攻克试题(含详细解析)第1页
    2021-2022学年最新京改版八年级数学下册第十五章四边形专项攻克试题(含详细解析)第2页
    2021-2022学年最新京改版八年级数学下册第十五章四边形专项攻克试题(含详细解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试综合训练题

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共29页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。


    京改版八年级数学下册第十五章四边形专项攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列说法中,正确的是( )
    A.若,,则
    B.90′=1.5°
    C.过六边形的每一个顶点有4条对角线
    D.疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查
    2、下面图案中既是轴对称图形又是中心对称图形的是(  )
    A. B. C. D.
    3、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )

    A.梯形 B.菱形 C.矩形 D.正方形
    4、下列图案中,是中心对称图形的是( )
    A. B. C. D.
    5、下列图标中,既是中心对称图形又是轴对称图形的是( )
    A. B. C. D.
    6、下列测量方案中,能确定四边形门框为矩形的是( )
    A.测量对角线是否互相平分 B.测量两组对边是否分别相等
    C.测量对角线是否相等 D.测量对角线交点到四个顶点的距离是否都相等
    7、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )

    A. B. C. D.
    8、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )
    A.14或15或16 B.15或16或17 C.15或16 D.16或17
    9、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为、,若=10°,则∠EAF的度数为(  )

    A.40° B.45° C.50° D.55°
    10、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是( )

    A.120° B.118° C.110° D.108°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、一个多边形的内角和是它的外角和的两倍,则这个多边形的边数为 ___.
    2、如图,将矩形ABCD折叠,使点C与点A重合,折痕为EF.若AF=5,BF=3,则AC的长为 _____.

    3、如图,四边形和四边形都是边长为4的正方形,点是正方形对角线的交点,正方形绕点旋转过程中分别交,于点,,则四边形的面积为______.

    4、若点关于原点的对称点是,则______.
    5、判断:
    (1)菱形的对角线互相垂直且相等(________)
    (2)菱形的对角线把菱形分成四个全等的直角三角形(________)
    三、解答题(5小题,每小题10分,共计50分)
    1、如图1,矩形ABCD中,AB=9,AD=12,点G在CD上,且DG=5,点P从点B出发,以1单位每秒的速度在BC边上向点C运动,设点P的运动时间为x秒.

    (1)△APG的面积为y,求y关于x的函数关系式,并求y=34时x的值;
    (2)在点P从B向C运动的过程中,是否存在使AP⊥GP的时刻?若存在,求出x的值,若不存在,请说明理由;
    (3)如图2,M,N分别是AP、PG的中点,在点P从B向C运动的过程中,线段MN所扫过的图形是什么形状   ,并直接写出它的面积   .
    2、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:

    ①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
    ②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
    然后运用类似的思想提出了如下命题:
    ③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.
    任务要求:
    (1)请你从①②③三个命题中选择一个进行证明;
    (2)请你继续完成下面的探索;
    ①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);
    ②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.
    3、如图,在平行四边形中,,..点在上由点向点出发,速度为每秒;点在边上,同时由点向点运动,速度为每秒.当点运动到点时,点,同时停止运动.连接,设运动时间为秒.

    (1)当为何值时,四边形为平行四边形?
    (2)设四边形的面积为,求与之间的函数关系式.
    (3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数.
    (4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由.
    4、如图,在中,AD>AB,∠ABC的平分线交AD于点F,EFAB交BC于点E.

    (1)求证:四边形ABEF是菱形;
    (2)若AB=5,AE=6,的面积为36,求DF的长.
    5、如图都是由边长为1的小等边三角形构成的网格图,每个网格图中有3个小等边三角形已涂上阴影.
    (1)请在下面①②③三个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个轴对称图形(3个图形中所涂三角形不同);
    (2)在④⑤两个网格图中分别涂上一个三角形,使得4个阴影小等边三角形组成一个中心对称图形(2个图形中所涂三角形不同).


    -参考答案-
    一、单选题
    1、B
    【分析】
    由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.
    【详解】
    解:若,则故A不符合题意;
    90′=故B符合题意;
    过六边形的每一个顶点有3条对角线,故C不符合题意;
    疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;
    故选:B.
    【点睛】
    本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.
    2、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;
    B.是轴对称图形,不是中心对称图形,故此选项不合题意;
    C.不是轴对称图形,是中心对称图形,故此选项不合题意;
    D.既是轴对称图形又是中心对称图形,故此选项符合题意.
    故选:D.
    【点睛】
    本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键.
    3、B
    【分析】
    根据题意得到,然后根据菱形的判定方法求解即可.
    【详解】
    解:由题意可得:,
    ∴四边形是菱形.
    故选:B.
    【点睛】
    此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.
    4、B
    【分析】
    由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.
    【详解】
    解:A、C、D都是轴对称图形,只有B选项是中心对称图形.
    故选:B.
    【点睛】
    本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、B
    【分析】
    由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.
    【详解】
    解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
    B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
    C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
    故选:B.
    【点睛】
    本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    6、D
    【分析】
    由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.
    【详解】
    解:A、∵对角线互相平分的四边形是平行四边形,
    ∴对角线互相平分且相等的四边形才是矩形,
    ∴选项A不符合题意;
    B、∵两组对边分别相等是平行四边形,
    ∴选项B不符合题意;
    C、∵对角线互相平分且相等的四边形才是矩形,
    ∴对角线相等的四边形不是矩形,
    ∴选项C不符合题意;
    D、∵对角线交点到四个顶点的距离都相等,
    ∴对角线互相平分且相等,
    ∵对角线互相平分且相等的四边形是矩形,
    ∴选项D符合题意;
    故选:D.
    【点睛】
    本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.
    7、A
    【分析】
    根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值. 连接DB,过点D作DH⊥AB交AB于点H,再利用直角三角形的性质和勾股定理求解即可;
    【详解】
    解:∵ED=EM,MF=FN,
    ∴EF=DN,
    ∴DN最大时,EF最大,
    ∴N与B重合时DN=DB最大,
    在Rt△ADH中, ∵∠A=60°

    ∴AH=2×=1,DH=,
    ∴BH=AB﹣AH=3﹣1=2,
    ∴DB=,
    ∴EFmax=DB=,
    ∴EF的最大值为.

    故选A
    【点睛】
    本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键.
    8、A
    【分析】
    由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.
    【详解】
    解:设新多边形的边数为n,
    则(n-2)•180°=2340°,
    解得:n=15,
    ①若截去一个角后边数增加1,则原多边形边数为14,
    ②若截去一个角后边数不变,则原多边形边数为15,
    ③若截去一个角后边数减少1,则原多边形边数为16,
    所以多边形的边数可以为14,15或16.
    故选:A.
    【点睛】
    本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.
    9、A
    【分析】
    可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.
    【详解】
    解:设∠EAD′=α,∠FAB′=β,
    根据折叠性质可知:
    ∠DAF=∠D′AF,∠BAE=∠B′AE,
    ∵∠B′AD′=10°,
    ∴∠DAF=10°+β,
    ∠BAE=10°+α,

    ∵四边形ABCD是矩形
    ∴∠DAB=90°,
    ∴10°+β+β+10°+10°+α+α=90°,
    ∴α+β=30°,
    ∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,
    =10°+α+β,
    =10°+30°,
    =40°.
    则∠EAF的度数为40°.
    故选:A.
    【点睛】
    本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.
    10、D
    【分析】
    由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.
    【详解】
    解:∵五边形ABCDE为正五边形,
    ∴AB=BC,∠ABM=∠C,
    在△ABM和△BCN中

    ∴△ABM≌△BCN(SAS),
    ∴∠BAM=∠CBN,
    ∵∠BAM+∠ABP=∠APN,
    ∴∠CBN+∠ABP=∠APN=∠ABC=
    ∴∠APN的度数为108°;
    故选:D.
    【点睛】
    本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.
    二、填空题
    1、6
    【分析】
    根据内角和等于外角和的2倍则内角和是720°利用多边形内角和公式得到关于边数的方程,解方程就可以求出多边形的边数.
    【详解】
    解:根据题意,得
    (n﹣2)•180=360×2,
    解得:n=6.
    故这个多边形的边数为6.
    故答案为:6.
    【点睛】
    本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.
    2、
    【分析】
    根据矩形的性质得到∠B=90°,根据勾股定理得到,根据折叠的性质得到CF=AF=5,根据勾股定理即可得到结论.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴∠B=90°,
    ∵AF=5,BF=3,
    ∴,
    ∵将矩形ABCD折叠,使点C与点A重合,折痕为EF.
    ∴CF=AF=5,
    ∴BC=BF+CF=8,
    ∴,
    故答案为:.
    【点睛】
    本题主要考查了矩形与折叠问题,勾股定理,解题的关键在于能够熟练掌握折叠的性质.
    3、4
    【分析】
    过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,把四边形的面积转化为正方形OGBH的面积,等于正方形ABCD面积的.
    【详解】
    如图,过点O作OG⊥AB,垂足为G,过点O作OH⊥BC,垂足为H,
    ∵四边形ABCD的对角线交点为O,
    ∴OA=OC,∠ABC=90°,AB=BC,
    ∴OG∥BC,OH∥AB,


    ∴四边形OGBH是矩形,OG=OH=,∠GOH=90°,
    ∴=4,
    ∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,
    ∴∠FOH=∠EOG,
    ∵∠OGE=∠OHF=90°,OG=OH,
    ∴△OGE≌△OHF,
    ∴,
    ∴,
    ∴=4,
    故答案为:4.
    【点睛】
    本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键.
    4、
    【分析】
    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
    【详解】
    解:由关于坐标原点的对称点为,得,

    解得:
    故答案为:.
    【点睛】
    本题考查了关于原点的对称的点的坐标,解题的关键是掌握关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    5、× √
    【分析】
    根据菱形的性质,即可求解.
    【详解】
    解:(1)菱形的对角线互相垂直且平分;
    (2)菱形的对角线把菱形分成四个全等的直角三角形.
    故答案为:(1)×;(2)√
    【点睛】
    本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键.
    三、解答题
    1、(1)y=-2.5x+54,x=8;(2)存在,x=6;(3)平行四边形;15.
    【分析】
    (1)PB=x,PC=12-x,然后依据△APG的面积=矩形的面积-三个直角三角形的面积可得到y与x的函数关系式,然后将y=34代入函数关系式可求得x的值;
    (2)先依据勾股定理求得PA、PG、AG的长,然后依据勾股定理的逆定理列出关于x的方程,从而可求得x的值;
    (3)确定出点P分别与点B和点C重合时,点M、N的位置,然后依据三角形的中位线定理可证明M1M2∥N1N2,N1N2=M1M2,从而可判断出MN扫过区域的形状,然后依据平行四边形的面积公式求解即可.
    【详解】
    解:(1)∵四边形ABCD为矩形,
    ∴DC=AB=9,AD=BC=12.
    ∵DG=5,
    ∴GC=4.
    ∵PB=x,PC=12-x,
    ∴y=9×12-×9×x-×4×(12-x)-×5×12,整理得:y=-2.5x+54.
    当y=34时,-2.5x+54=34,解得x=8;
    (2)存在.
    ∵PB=x,PC=12-x,AD=12,DG=5,
    ∴PA2=AB2+BP2=81+x2,PG2=PC2+GC2=(12-x)2+16,AG2=AD2+DG2=169.
    ∵当AG2=AP2+PG2时,AP⊥PG,
    ∴81+x2+(12-x)2+16=169,整理得:x2-12x+36=0,配方得:(x-6)2=0,
    解得:x=6;
    (3)如图所示:

    ∵当点P与点B重合时,点M位于M1处,点N位于点N1处,
    ∴M1为AB的中点,点N1位GB的中点.
    ∵当点P与点C重合时,点M位于M2处,点N位于点N2处,
    ∴M2为AC的中点,点N2位CG的中点.
    ∴M1M2∥BC,M1M2=BC,N1N2∥BC,N1N2=BC.
    ∴M1M2∥N1N2,N1N2=M1M2.
    ∴四边形M1M2N2N1为平行四边形.
    ∴MN扫过的区域为平行四边形.
    S=BC•(AB-CG)=6×2.5=15,
    故答案为:平行四边形;15.
    【点睛】
    本题主要考查了列函数关系式、三角形的面积公式、三角形的中位线定理、平行四边形的判定和性质、勾股定理的应用,画出MN扫过的图形是解题的关键.
    2、(1)选①或②或③,证明见详解;(2)①当时,结论成立;②当时,还成立,证明见详解.
    【分析】
    (1)命题①,根据等边三角形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题②,根据正方形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题③,根据正五边形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;
    (2)①根据(1)中三个命题的结果,得出相应规律,即可得解;
    ②连接BD、CE,根据全等三角形的判定定理和性质可得:, ,,,利用各角之间的关系及等量代换可得:, ,继续利用全等三角形的判定定理和性质即可得出证明.
    【详解】
    解:(1)如选命题①,证明:如图所示:


    ∵ ,
    ∴ ,
    ∵ ,
    ∴ ,
    在 与ΔCAN中,

    ∴ ,
    ∴ ;
    如选命题②,
    证明:如图所示:


    ∵ ,
    ∴ ,
    ∵ ,
    ∴ ,
    在 与ΔCDN中,

    ∴ ,
    ∴ ;
    如选命题③,
    证明:如图所示:


    ∵ ,
    ∴ ,
    ∵ ,
    ∴ ,
    在 与ΔCDN中,

    ∴ ,
    ∴ ;
    (2)①根据(1)中规律可得:当时,结论成立;
    ②答:当时,成立.
    证明:如图所示,连接BD、CE,


    在和中,

    ∴ ,
    ∴ ,,,
    ∵ ,
    ∴ ,
    ∵ ,.
    ∴ ,
    又∵ ,
    ∴ ,
    在和中,

    ∴ ,
    ∴ .
    【点睛】
    题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键.
    3、(1);(2)y=S四边形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)当t=4或 或时,为等腰三角形,理由见解析.
    【分析】
    (1)利用平行四边形的对边相等AQ=BP建立方程求解即可;
    (2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;
    (3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;
    (4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.
    【详解】
    解:(1)∵在平行四边形中,,,
    由运动知,AQ=16−t,BP=2t,
    ∵四边形ABPQ为平行四边形,
    ∴AQ=BP,
    ∴16−t=2t
    ∴t=,
    即:t=s时,四边形ABPQ是平行四边形;
    (2)过点A作AE⊥BC于E,如图,

    在Rt△ABE中,∠B=30°,AB=8,
    ∴AE=4,
    由运动知,BP=2t,DQ=t,
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=16,
    ∴AQ=16−t,
    ∴y=S四边形ABPQ=(BP+AQ)•AE=(2t+16−t)×4=2t+32(0<t≤8);
    (3)由(2)知,AE=4,
    ∵BC=16,
    ∴S四边形ABCD=16×4=64,
    由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),
    ∵四边形ABPQ的面积是四边形ABCD的面积的四分之三
    ∴2t+32=×64,
    ∴t=8;
    如图,


    当t=8时,点P和点C重合,DQ=8,
    ∵CD=AB=8,
    ∴DP=DQ,
    ∴∠DQC=∠DPQ,
    ∴∠D=∠B=30°,
    ∴∠DQP=75°;
    (4)①当AB=BP时,BP=8,
    即2t=8,t=4;
    ②当AP=BP时,如图,

    ∵∠B=30°,
    过P作PM垂直于AB,垂足为点M,
    ∴BM=4,,
    解得:BP=,
    ∴2t=,
    ∴t=
    ③当AB=AP时,同(2)的方法得,BP=,
    ∴2t=,
    ∴t=
    所以,当t=4或 或时,△ABP为等腰三角形.
    【点睛】
    此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.
    4、(1)见解析;(2)2.5.
    【分析】
    (1)根据平行四边形的性质和角平分线的性质说明∠ABF=∠AFB、可得AB=AF,同理可得AB=AF,再由AF∥BE可得四边形ABEF是菱形;
    (2)过A作AH⊥BE垂足为E,根据菱形的性质可得AO=EO、BO=FO,AF=EF=AB=5,AE⊥BF,利用勾股定理可得AO的长,进而可得AE长,利用菱形的面积公式计算出AH的长,然后根据ABCD的面积公式求出AD,最后根据线段的和差即可解答.
    【详解】
    (1)证明:四边形ABCD是平行四边形,
    ∴AD//BC,即AF//BE
    ∴∠FBE=∠AFB,
    ∵∠ABC的平分线交AD于点F,
    ∴∠ABF=∠EBF,
    ∴∠ABF=∠AFB,
    ∴AB=AF,
    又∵AB//EF,AF//BE
    ∴四边形ABEF是平行四边形,
    ∵AB=AF,
    ∴四边形ABEF是菱形;
    (2)如图:过A作AH⊥BE垂足为H,
    ∵四边形ABCD是菱形,
    ∴AO=EO,BO=FO,AF=AB=5,AE⊥BF,
    ∵AE=6,
    ∴AO=3,
    ∴BO=
    ∴BF=8,
    ∴S菱形ABEF=AE·BF=×8×6=24,
    ∴BE·AH=24,
    ∴AH=;
    ∵S平行四边形ABCD=BC·AH=36,
    ∴BC=
    ∵平行四边形ABCD
    ∴AD=BC=
    ∴FD=AD-AF=-5=2.5.

    【点睛】
    本题主要考查了菱形的判定与性质、平行四边形的性质以及面积的问题,灵活利用菱形的判定与性质、平行四边形的性质成为解答本题的关键.
    5、(1)见解析;(2)见解析
    【分析】
    (1)直接利用轴对称图形的性质得出符合题意的答案;
    (2)直接利用中心对称图形的性质得出符合题意的答案.
    【详解】
    解:(1)如图所示:①②③都是轴对称图形;
    (2)如图所示:④⑤都是中心对称图形.

    【点睛】
    此题主要考查了利用轴对称设计图案、利用旋转设计图案,正确掌握相关定义是解题关键.

    相关试卷

    初中数学第十五章 四边形综合与测试同步测试题:

    这是一份初中数学第十五章 四边形综合与测试同步测试题,共22页。

    北京课改版八年级下册第十五章 四边形综合与测试综合训练题:

    这是一份北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共33页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试精练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试精练,共26页。试卷主要包含了如图,M,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map