|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年最新京改版八年级数学下册第十五章四边形月考练习题(含详解)
    立即下载
    加入资料篮
    2021-2022学年最新京改版八年级数学下册第十五章四边形月考练习题(含详解)01
    2021-2022学年最新京改版八年级数学下册第十五章四边形月考练习题(含详解)02
    2021-2022学年最新京改版八年级数学下册第十五章四边形月考练习题(含详解)03
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课堂检测

    展开
    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课堂检测,共28页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。

    京改版八年级数学下册第十五章四边形月考

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,DE分别是ABAC的中点,连接DEBE,点MCB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为(   

    A.16 B.24 C.32 D.40

    2、在平面直角坐标系中,点关于原点对称的点的坐标是(   

    A. B. C. D.

    3、如图菱形ABCD,对角线ACBD相交于点O,若BD=8,AC=6,则AB的长是(   

    A.5 B.6 C.8 D.10

    4、下列图形中,不是中心对称图形的是(   

    A. B. C. D.

    5、如图,在六边形中,若,则   

    A.180° B.240° C.270° D.360°

    6、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为(  )

    A.7 B. C.8 D.9

    7、下列图形中,既是轴对称图形又是中心对称图形的是(  )

    A. B. C. D.

    8、如图,以O为圆心,长为半径画弧别交AB两点,再分别以AB为圆心,以长为半径画弧,两弧交于点C,分别连接,则四边形一定是(   


    A.梯形 B.菱形 C.矩形 D.正方形

    9、下列图形中,可以看作是中心对称图形的是(   

    A. B.

    C. D.

    10、如图,在中,∠ACB=90°,AB=10,CDAB边上的中线,则CD的长是(   

    A.20 B.10 C.5 D.2

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、正方形ABCD的边长是8cm,点MBC边上,且MC=2cm,P是正方形边上的一个动点,连接PBAM于点N,当PB=AM时,PN的长是_____ .

    2、如图,以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于AB两点,则线段AB长度的最小值为_________.

    3、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点PBC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.


     

    4、如图,菱形ABCD的对角线ACBD相交于点OEDC的中点,若,则菱形的周长为__________.

    5、菱形ABCD的周长为,对角线ACBD相交于点OAOBO=1:2,则菱形ABCD的面积为________.

    三、解答题(5小题,每小题10分,共计50分)

    1、如图,正方形ABCD的边长为4,连接对角线AC,点EBC边上一点,将线段AE绕点A逆时针旋转45°得到线段AF,点E的对应点F恰好落在边CD上,过FFMAC于点M

    (1)求证:BEFM

    (2)求BE的长度.

    2、如图,四边形ABCD是平行四边形,EF是对角线AC的三等分点,连接BEDF.证明BE=DF

    3、如图,四边形ABCD是平行四边形,,且分别交对角线于点EF,连接EDBF

    (1)求证:四边形BEDF是平行四边形;

    (2)若AEEF,请直接写出图2中面积等于四边形ABCD的面积的的所有三角形.

    4、如图1,在平面直角坐标系中,且

    (1)试说明是等腰三角形;

    (2)已知.写出各点的坐标:A(              ),B(              ),C(              ).

    (3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.

    ①若的一条边与BC平行,求此时点M的坐标;

    ②若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点M的坐标;若不能,请说明理由.

    5、如图,将矩形沿折叠,使点落在边上的点处;再将矩形沿折叠,使点落在点处且点.

    (1)求证:四边形是平行四边形;

    (2)当是多少度时,四边形为菱形?试说明理由.

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    由中点的定义可得AE=CEAD=BD,根据三角形中位线的性质可得DE//BCDE=BC,根据平行线的性质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AEDE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.

    【详解】

    DE分别是ABAC的中点,

    AE=CEAD=BDDE为△ABC的中位线,

    DE//BCDE=BC

    ∵∠ABC=90°,

    ∴∠ADE=∠ABC=90°,

    在△MBD和△EDA中,

    ∴△MBD≌△EDA

    MD=AEDE=MB

    DE//MB

    ∴四边形DMBE是平行四边形,

    MD=BE

    AC=18,BC=14,

    ∴四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32.

    故选:C.

    【点睛】

    本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.

    2、A

    【分析】

    关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.

    【详解】

    解:点关于原点对称的点的坐标是:

    故选A

    【点睛】

    本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.

    3、A

    【分析】

    由菱形的性质可得OA=OC=3,OB=OD=4,AOBO,由勾股定理求出AB

    【详解】

    解:∵四边形ABCD是菱形,AC=6,BD=8,

    OA=OC=3,OB=OD=4,AOBO

    RtAOB中,由勾股定理得:

    故选:A.

    【点睛】

    本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.

    4、C

    【详解】

    解:选项A是中心对称图形,故A不符合题意;

    选项B是中心对称图形,故B不符合题意;

    选项C不是中心对称图形,故C符合题意;

    选项D是中心对称图形,故D不符合题意;

    故选C

    【点睛】

    本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.

    5、C

    【分析】

    根据多边形外角和求解即可.

    【详解】

    解:

     

    故选:C

    【点睛】

    本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键.

    6、C

    【分析】

    根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.

    【详解】

    解:∵∠AEB=90D是边AB的中点,AB=6,

    DEAB=3,

    EF=1,

    DFDE+EF=3+1=4.

    D是边AB的中点,点F是边BC的中点,

    DFABC的中位线,

    AC=2DF=8.

    故选:C

    【点睛】

    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键.

    7、D

    【详解】

    解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
     

    B.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    C.是轴对称图形,不是中心对称图形,故本选项符合题意;
    D.既是轴对称图形,又是中心对称图形,故本选项不符合题意.
    故选:D.

    【点睛】

    本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.

    8、B

    【分析】

    根据题意得到,然后根据菱形的判定方法求解即可.

    【详解】

    解:由题意可得:

    ∴四边形是菱形.

    故选:B.

    【点睛】

    此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.

    9、C

    【分析】

    根据中心对称图形的定义进行逐一判断即可.

    【详解】

    解:A、不是中心对称图形,故此选项不符合题意;

    B、不是中心对称图形,故此选项不符合题意;

    C、是中心对称图形,故此选项符合题意;

    D、不是中心对称图形,故此选项不符合题意;

    故选C.

    【点睛】

    本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:

    把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

    10、C

    【分析】

    由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长.

    【详解】

    解:∵在中,AB=10,CDAB边上的中线

    故选:C.

    【点睛】

    本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.

    二、填空题

    1、5cm或5.2cm

    【分析】

    当点PBC上,AMBP,当点PAB上,AMBP,当点PCD上,如图,根据PB=AM,可证Rt△ABM≌Rt△BCP(HL),可证BPAM,根据勾股定理可求AM=,根据三角形面积可求,可求PN=BP-BN;当点PAD上,如图,可证Rt△ABM≌Rt△BAP(HL),再证AN=PN=BN=MN,根据AM=BP=10cm,可求PN=cm,

    【详解】

    解:当点PBC上,AMBP,当点PAB上,AMBP,不合题意,舍去;

    当点PCD上,如图,

    PB=AM

    ∵四边形ABCD为正方形,

    AB=BC=AD=CD=8,

    在Rt△ABM和Rt△BCP中,

    ∴Rt△ABM≌Rt△BCP(HL),

    ∴∠MAB=∠PBC

    ∵∠MAB+∠AMB=90°,

    ∴∠PBC+∠AMB=90°,

    ∴∠BNM=180°-∠PBC-∠AMB=90°,

    BPAM

    MC=2cm,

    BM=BC-MC=8-2=6cm,

    AM=

    PN=BP-BN=AM-BN=10-4.8=5.2cm,


     

    当点PAD上,如图,

    在Rt△ABM和Rt△BAP中,

    ∴Rt△ABM≌Rt△BAP(HL),

    BM=AP,∠AMB=∠BPA,∠MAB=∠PBA

    AN=BN

    AD∥BC

    ∴∠PAN=∠NMB=∠APN

    AN=PN=BN=MN

    AM=BP=10cm,

    PN=cm,

    PN的长为5cm或5.2cm.

    故答案为5cm或5.2cm.


    【点睛】

    本题考查正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想,掌握正方形的性质,三角形全等判定与性质,勾股定理,等腰三角形判定与性质,分类讨论思想是解题关键.

    2、

    【分析】

    根据正方形的对角线平分一组对角线可得∠OCD=∠ODB=45°,正方形的对角线互相垂直平分且相等可得∠COD=90°,OC=OD,然后根据同角的余角相等求出∠COA=∠DOB,再利用“ASA”证明△COA和△DOB全等,根据全等三角形对应边相等可得OA=OB,从而得到△AOB是等腰直角三角形,再根据垂线段最短可得OACD时,OA最小,然后求出OA,再根据等腰直角三角形的斜边等于直角边的倍解答.

    【详解】

    解:如图,

    ∵四边形CDEF是正方形,

    中,

    OA=OB
    ∵∠AOB=90°,
    ∴△AOB是等腰直角三角形,
    由勾股定理得: ,

    要使AB最小,只要OA取最小值即可,
    根据垂线段最短,OACD时,OA最小,
    ∵正方形CDEF
    FCCDOD=OF
    CA=DA
    OA=,

    AB=

    【点睛】

    本题考查了正方形的性质,全等三角形的判定与性质,垂线段最短,勾股定理,熟记各性质并求出三角形全等,然后求出△AOB是等腰直角三角形是解题的关键.

    3、

    【分析】

    分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可

    【详解】

    如图:当将纸片沿纵向对折

    根据题意可得:

    的三等分点

    中有

    如图:当将纸片沿横向对折

    根据题意得:

    中有

    的三等分点

    故答案为:

    【点睛】

    本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.

    4、16

    【分析】

    由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长.

    【详解】

    ∵四边形ABCD是菱形,且对角线相交于点O

    ∴点OAC的中点

    EDC的中点

    OE为△CAD的中位线

    AD=2OE=2×2=4

    ∴菱形的周长为:4×4=16

    故答案为:16

    【点睛】

    本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键.

    5、4

    【分析】

    根据菱形的性质求得边长,根据AOBO=1:2,求得对角线的长,进而根据菱形的面积等于对角线乘积的一半即可求解.

    【详解】

    解:如图

    四边形是菱形

    菱形ABCD的周长为

    AOBO=1:2,

    故答案为:4

    【点睛】

    本题考查了菱形的性质,勾股定理,掌握菱形的面积等于对角线乘积的一半是解题的关键.

    三、解答题

    1、(1)见解析;(2)—4

    【分析】

    (1)由旋转和正方形的性质得出∠FAM=∠EAB,再证即可;

    (2)求出正方形对角线长,再求出MC=—4即可.

    【详解】

    (1)证明:在正方形ABCD中,线段AE绕点A逆时针旋转45°得到线段AF

    CAB=45°,∠EAF=45°,AEAF 

    FAM=∠EAB                

    FMAC

    FMA=∠B=90°

    AAS              

    BEFM                      

    (2)在正方形ABCD中,边长为4

    AC,∠DCA=45°           

                      

    AMAB=4                              

    MCACAM—4                

    是等腰直角三角形

    BEMFMC—4

    【点睛】

    本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,解题关键是熟练运用正方形的性质和全等三角形的判定进行证明推理.

    2、见详解

    【分析】

    由题意易得AB=CDABCDAE=CF,则有∠BAE=∠DCF,进而问题可求证.

    【详解】

    证明:∵四边形ABCD是平行四边形,

    AB=CDABCD

    ∴∠BAE=∠DCF

    EF是对角线AC的三等分点,

    AE=CF

    在△ABE和△CDF中,

    ∴△ABE≌△CDFSAS),

    BE=DF

    【点睛】

    本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键.

    3、(1)证明见解析;(2)

    【分析】

    (1)先证明再证明可得从而有 于是可得结论;

    (2)先证明再证明,从而可得结论.

    【详解】

    证明:(1) 四边形ABCD是平行四边形,

    四边形BEDF是平行四边形.

    (2)由(1)得:

    四边形BEDF是平行四边形, 四边形ABCD是平行四边形,

    【点睛】

    本题考查的是平行四边形的判定与性质,熟练的运用一组对边平行且相等的四边形是平行四边形是证明的关键,第(2)问先确定面积为平行四边形ABCD的三角形是解题的关键.

    4、(1)见解析;(2)12,0;-8,0;0,16;(3)①当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;②当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.
     

    【分析】

    (1)设,则,由勾股定理求出,即可得出结论;

    (2)由的面积求出m的值,从而得到的长,即可得到ABC的坐标;

    (3)①分当时,;当时,;得出方程,解方程即可;

    ②由直角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可.

    【详解】

    解:(1)证明:设,则

    中,

    是等腰三角形;

    (2)∵

    A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),

    故答案为:12,0;-8,0;0,16;

    (3)①如图3-1所示,

    MNBC时,

    AB=AC

    ∴∠ABC=∠ACB

    MNBC

    ∴∠AMN=∠ABC,∠ANM=∠ACB

    ∴∠AMN=∠ANM

    AM=AN

    AM=BM

    MAB的中点,

    ∴点M的坐标为(2,0);

    如图3-2所示,当ONBC时,

    同理可得

    M点的坐标为(4,0);

    ∴综上所述,当M的坐标为(2,0)或(4,0)时,△OMN的一条边与BC平行;
     

    ②如图3-3所示,当OM=OE时,

    EAC的中点,∠AOC=90°,

    ∴此时M的坐标为(0,10);

    如图3-4所示,当时,

    ∴此时M点与A点重合,

    M点的坐标为(12,0);

    如图3-5所示,当OM=ME时,过点EEFx轴于F

    OE=AEEFOA

    ,则

    解得

    M点的坐标为(,0);

    综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,,△MOE是等腰三角形.

    【点睛】

    本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解.

    5、(1)见解析;(2)当∠B1FE=60°时,四边形EFGB为菱形,理由见解析

    【分析】

    (1)由题意,,结合,得,同理可得,即,结合,依据平行四边形的判定定理即可证明四边形BEFG是平行四边形;

    (2)根据菱形的性质可得,结合(1)中结论得出为等边三角形,依据等边三角形的性质及(1)中结论即可求出角的大小.

    【详解】

    证明:(1)∵

    又∵

    同理可得:

    又∵

    ∴四边形BEFG是平行四边形;

    (2)当时,四边形EFGB为菱形.

    理由如下:

    ∵四边形BEFG是菱形,

    由(1)得:

    为等边三角形,

    【点睛】

    题目主要考查平行四边形和菱形的判定定理和性质,矩形的折叠问题,等边三角形的性质,熟练掌握特殊四边形的判定和性质是解题关键.

     

    相关试卷

    初中数学第十五章 四边形综合与测试当堂达标检测题: 这是一份初中数学第十五章 四边形综合与测试当堂达标检测题,共25页。试卷主要包含了下列说法中,正确的是,以下分别是回收,平行四边形中,,则的度数是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试达标测试: 这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试达标测试,共33页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。

    初中北京课改版第十五章 四边形综合与测试同步达标检测题: 这是一份初中北京课改版第十五章 四边形综合与测试同步达标检测题,共24页。试卷主要包含了平行四边形中,,则的度数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map